We demonstrate that the hierarchically porous metal hydroxide/metal-organic framework composite nanoarchitectures exhibit broad-spectrum removal activity for three chemically distinct toxic gases, viz. acid gases, base gases, and nitrogen oxides. A facile and general in-situ hydrolysis strategy combined with gentle ambient pressure drying (APD) was utilized to integrate both Zr(OH) and Ti(OH) with the amino-functionalized MOF-808 xerogel (G808-NH). The M(OH)/G808-NH xerogel composites manifested 3D crystalline porous networks and substantially hierarchical porosity, with controllable amounts of amorphous M(OH) nanoparticles residing at the edge of xerogel particles. Microbreakthrough tests were performed under both dry and moist conditions to evaluate the filtration capabilities of the composites against three representative compounds: SO, NH, and NO. Compared with the pristine G808-NH xerogel, the incorporation of M(OH) effectively enhanced the broad-spectrum toxic chemical mitigation ability of the material, with the highest SO, NH, and NO breakthrough uptake reaching 74.5, 55.3, and 394.0 mg/g, respectively. Post-breakthrough characterization confirmed the abundant M-OH groups with diverse binding configurations, alongside the unsaturated M (IV) centers on the surface of M(OH) provided extra adsorption sites for irreversible toxic chemical capture besides Van der Waals driven physisorption. The ability to achieve high-capacity adsorption and strong retention for multiple contaminants is of great significance for real-world filtration applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.08.003 | DOI Listing |
Nanoscale
January 2025
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes.
View Article and Find Full Text PDFNanoscale
January 2025
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Chalcogenide perovskites are gaining prominence as earth-abundant and non-toxic solar absorber materials, crystallizing in a distorted perovskite structure. Among these, BaZrS has attracted the most attention due to its optimal bandgap and its ability to be synthesized at relatively low temperatures. BaZrS exhibits a high light absorption coefficient, excellent stability under exposure to air, moisture, and heat, and is composed of earth-abundant elements.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
The ability to identify unknown risks is the key to improving the level of food safety. However, the conventional nontargeted screening methods for new contaminant identification and risk assessment remain difficult work. Herein, a toxic-oriented screening platform based on high-expression epidermal growth factor receptor HEK293 cell membrane-coated magnetic nanoparticles (EGFR/MNPs) was first used for the discovery of unknown contaminants from food samples.
View Article and Find Full Text PDFChemSusChem
January 2025
Xian Jiaotong University, School of Chemical Engineering and Technology, Xianning west road 8th, School of Chemical Engineering and Technology, 710049, Xi'an, CHINA.
In light of the increasingly pressing energy and environmental challenges, the use of photocatalysis to convert solar energy into chemical energy has emerged as a promising solution. Halide perovskites have recently attracted considerable interest as photocatalysts due to their outstanding properties. Early developments focused on Lead-based perovskites, but their use has been severely restricted due to the toxicity of Lead.
View Article and Find Full Text PDFEnviron Res
January 2025
University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN, 55105, USA.
Emerging organic contaminants (EOCs) are a growing concern for aquatic ecosystems, underscoring the need for advanced risk assessment methodologies. This study employed an integrated approach to evaluate the risks associated with 563 EOCs across 13 monitoring sites along the Sava River in Croatia. Sampling was conducted during the winter and spring months, spanning February to May.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!