The connectome, a comprehensive map of the brain's anatomical connections, is often summarized as a matrix comprising all dyadic connections among pairs of brain regions. This representation cannot capture higher-order relations within the brain graph. Connectome embedding (CE) addresses this limitation by creating compact vectorized representations of brain nodes capturing their context in the global network topology. Here, nodes "context" is defined as random walks on the brain graph and as such, represents a generative model of diffusive communication around nodes. Applied to group-averaged structural connectivity, CE was previously shown to capture relations between inter-hemispheric homologous brain regions and uncover putative missing edges from the network reconstruction. Here we extend this framework to explore individual differences with a novel embedding alignment approach. We test this approach in two lifespan datasets (NKI: n = 542; Cam-CAN: n = 601) that include diffusion-weighted imaging, resting-state fMRI, demographics and behavioral measures. We demonstrate that modeling functional connectivity with CE substantially improves structural to functional connectivity mapping both at the group and subject level. Furthermore, age-related differences in this structure-function mapping, are preserved and enhanced. Importantly, CE captures individual differences by out-of-sample prediction of age and intelligence. The resulting predictive accuracy was higher compared to using structural connectivity and functional connectivity. We attribute these findings to the capacity of the CE to incorporate aspects of both anatomy (the structural graph) and function (diffusive communication). Our novel approach allows mapping individual differences in the connectome through structure to function and behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464439PMC
http://dx.doi.org/10.1016/j.neuroimage.2021.118469DOI Listing

Publication Analysis

Top Keywords

individual differences
16
functional connectivity
12
mapping individual
8
structure function
8
function behavior
8
connectome embedding
8
brain regions
8
brain graph
8
diffusive communication
8
structural connectivity
8

Similar Publications

Background: Elbow injuries are prevalent among professional baseball pitchers as nearly 25% undergo ulnar collateral ligament reconstruction. Pitch type, ball velocity, and spin rate have been previously hypothesized to influence elbow varus torque and subsequent risk of injury, but existing research is inconclusive.

Purpose: To examine elbow varus torque, cumulative torque, and loading rate within professional pitchers throwing fastball, curveball, change-up, and slider pitches, as well as to identify potential influences of ball spin on the elbow.

View Article and Find Full Text PDF

Purpose: Human trafficking survivors' successful social reintegration is of paramount importance. However, survivors found it difficult to build their lives in Bangladesh upon return. The specific challenges encountered by Bangladeshi trafficking survivors remain underexplored, particularly regarding individual, socio-cultural, and systematic factors.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) in children, including concussion, is one of the major causes of emergency department (ED) registration and a significant burden on the health system.

Objectives: The primary goal of this study was to evaluate the outcomes of a telemedicine strategy for remotely monitoring the children with traumatic brain concussions, focusing on their neurological symptoms and signs. The secondary goal was to explore socioeconomic and educational differences among the participating families.

View Article and Find Full Text PDF

Communal values (i.e., valuing care for and connection with others) are important to individual well-being and societal functioning yet show marked gender differences, with girls valuing communion more than boys do.

View Article and Find Full Text PDF

Overcoming challenges to achieve success involves being able to spontaneously come up with effective strategies to address different task demands. Research has linked individual differences in such strategy generation and use to optimal development over time and greater success across many areas of life. Yet, there is surprisingly little experimental evidence that tests how we might help young children to spontaneously generate and apply effective strategies across different challenging tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!