Thioredoxin 1 is required for stress granule assembly upon arsenite-induced oxidative stress.

Food Chem Toxicol

Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.

Published: October 2021

Arsenic is a major water pollutant and health hazard, leading to acute intoxication and, upon chronic exposure, several diseases including cancer development. Arsenic exerts its pronounced cellular toxicity through its trivalent oxide arsenite (ASN), which directly inhibits numerous proteins including Thioredoxin 1 (Trx1), and causes severe oxidative stress. Cells respond to arsenic by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic condensates of stalled mRNAs, translation factors and RNA-binding proteins. The biological role of SGs is diverse and not completely understood; they are important for regulation of cell signaling and survival under stress conditions, and for adapting de novo protein synthesis to the protein folding capacity during the recovery from stress. In this study, we identified Trx1 as a novel component of SGs. Trx1 is required for the assembly of ASN-induced SGs, but not for SGs induced by energy deprivation or heat shock. Importantly, our results show that Trx1 is essential for cell survival upon acute exposure to ASN, through a mechanism that is independent of translation inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2021.112508DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
protein synthesis
8
stress
6
sgs
5
thioredoxin required
4
required stress
4
stress granule
4
granule assembly
4
assembly arsenite-induced
4
arsenite-induced oxidative
4

Similar Publications

Insect protein hydrolysates (PH) are emerging as valuable compounds with biological activity. The aim of the present study was to assess the potential cytoprotective effects of PH from the Black Soldier Fly (BPH, in the range 0.1-0.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.

View Article and Find Full Text PDF

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

Introduction: The grayling ( L.) has several advantages over other fish species that make it attractive for aquaculture and invest it with importance for food security. The study assessed the effects of a β-glucan-enriched diet on biomarkers of oxidative stress, energy metabolism and lysosomal function in muscle tissue of European grayling ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!