Chronic restraint stress induces anxiety-like behavior and remodeling of dendritic spines in the central nucleus of the amygdala.

Behav Brain Res

Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CDMX, Mexico. Electronic address:

Published: January 2022

Previous studies have shown that the anxiogenic effects of chronic stress do not correlate with dendritic remodeling in the central nucleus of the amygdala (CeA). We analyzed the effect of chronic restraint stress (CRS; 20 min/day for 14 days), relative to control (CTRL) conditions on anxiety-like behavior in the elevated plus maze (EPM) and the open field tests, and dendritic morphology, dendritic spine density and spine type numbers in pyramidal neurons of the CeA. Reversal of CRS-induced effects was explored in animals allowed a 14-day stress-free recovery after treatments. CRS decreased the frequency and time in the open arms and increased the anxiety index in the EPM, and reduced visits and time in the center of the open field. Morphological assays in these animals revealed no effect of CRS on dendritic complexity in CeA neurons; however, a decrease in dendritic spine density together with decreased and increased amounts of mushroom and thin spines, respectively, was detected. Subsequent to a stress-free recovery, a significant reduction in open arm entries together with an increased anxiety index was detected in CRS-exposed animals; open field parameters did not change significantly. A decreased density of total dendritic spines, in parallel with higher and lower numbers of thin and stubby spines, respectively, was observed in CeA neurons. Results suggest that CRS-induced anxiety-like behavior might be accounted for by a reduction in synaptic connectivity of the CeA. This effect, which is long lasting, could mediate the persisting anxiogenic effects of chronic stress after exposure to it has ended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2021.113523DOI Listing

Publication Analysis

Top Keywords

anxiety-like behavior
12
open field
12
chronic restraint
8
restraint stress
8
dendritic spines
8
central nucleus
8
nucleus amygdala
8
anxiogenic effects
8
effects chronic
8
chronic stress
8

Similar Publications

Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice.

View Article and Find Full Text PDF

Chronic pain is a debilitative disease affecting 1 in 5 adults globally, and is a major risk factor for anxiety (Goldberg and McGee, 2011; Lurie, DI., 2018). Given the current dearth of available treatments for both individuals living with chronic pain and mental illnesses, there is a critical need for research into the molecular mechanisms involved in order to discover novel treatment targets.

View Article and Find Full Text PDF

Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!