We present a brief commentary on the field's search for an anatomical asymmetry between Broca's area and its homologue in the non-dominant hemisphere, focusing on a selection of studies, including research from the last decade. We demonstrate that, several years after the influential review of Keller and colleagues from 2009, and despite recent advances in neuroimaging, the existence of a structural asymmetry of Broca's area is still controversial. This is especially the case for studies of the macroanatomy of this region. We point out the inconsistencies in methodology across studies that could account for the discrepancy in results. Investigations of the microstructure of Broca's area show a trend of a leftward asymmetry, but it is still unclear how these results relate to language dominance. We suggest that it may be necessary to combine multiple metrics in a systematic manner to find robust asymmetries and to expand the regional scope of structural investigations. Finally, based on the current state of the literature, we should not rule out the possibility that language dominance may simply not be reflected in local anatomical differences in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-021-02357-x | DOI Listing |
Biomedicines
January 2025
Department of Anatomy & Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA.
Speech disorders encompass a complex interplay of neuroanatomical, genetic, and environmental factors affecting individuals' communication ability. This review synthesizes current insights into the neuroanatomy, genetic underpinnings, and environmental influences contributing to speech disorders. Neuroanatomical structures, such as Broca's area, Wernicke's area, the arcuate fasciculus, and basal ganglia, along with their connectivity, play critical roles in speech production, comprehension, and motor coordination.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
INSERM, IMRBU955, Univ Paris Est Créteil, Créteil, France.
Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).
Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).
Neuroimage
January 2025
Department of Anthropology, The George Washington University, Washington DC, USA.
Broca's and Wernicke's areas are comprised of Brodmann areas 44, 45 and 22 in the human brain. Because of their roles in higher cognitive and linguistic function, there has been historical and contemporary interest in comparative studies on the morphology and cytoarchitectonic organization in Broca's and Wernicke's between primate species. One challenge to comparative morphological studies between human and nonhuman primates for Broca's and Wernicke's areas is the absence in homologous sulci used to define these regions.
View Article and Find Full Text PDFPsychiatry Res Neuroimaging
March 2025
Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
The left posterior superior temporal gyrus (pSTG) is thought to be involved in the pathophysiology and core symptoms of schizophrenia, although its structural connectivity has not yet been systematically investigated. Here, we aimed to evaluate its white matter (WM) connectivity with Broca's area, the thalamus, and the right pSTG. Eighty-three patients with schizophrenia and 141 healthy controls underwent diffusion-weighted imaging and T1-weighted three-dimensional magnetic resonance imaging.
View Article and Find Full Text PDFNeuroimage
January 2025
School of Computing, Tokyo Institute of Technology, Yokohama, Japan; ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan. Electronic address:
Transcranial direct current stimulation (tDCS) is a potential method for improving verbal function by stimulating Broca's area. Previous studies have shown the effectiveness of using functional magnetic resonance imaging (fMRI) to optimize the stimulation site, but it is unclear whether similar optimization can be achieved using scalp electroencephalography (EEG). Here, we investigated whether tDCS targeting a brain area identified by EEG can improve verbalization performance during a picture-naming task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!