Bladder mesenchymal stromal cell-derived exosomal miRNA-217 modulates bladder cancer cell survival through Hippo-YAP pathway.

Inflamm Res

Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, China.

Published: September 2021

Background: Donor cell-derived exosomes regulate recipient cell functions. The aim of this study was to investigate the effect of human normal bladder stromal cell (hBSC) derived exosomal miR-217 on bladder cell cancer proliferation and migration.

Methods: Human BSCs were transfected with miR-217 mimic or inhibitor and hBSC-derived exosomes were isolated. Human bladder cancer cell lines (T24 and 5367) were co-cultured with hBSC-derived exosomal miR-217 mimic or inhibitor. Proliferation, migration, and apoptosis of the bladder cancer cells were assessed by Edu assay, Transwell migration assay, and Annexin V assay.

Results: Expression of miR-217 was significantly higher in the T24 and 5367 cell lines (P < 0.01). Exosomal miR-217 mimic enhanced proliferation and migration of T24 and 5367 cells, but inhibited apoptosis of the cells (P < 0.01); in contrast, exosomal miR-217 inhibitor suppressed proliferation and migration but stimulated apoptosis of the two cancer cell lines (P < 0.01). Moreover, exosomal miR-217 mimic stimulated YAP and its target proteins including Cyr61, CTGF, and ANKRD1 (P < 0.01), and in contrast, exosomal miR-217 inhibitor suppressed YAP and its target proteins (P < 0.01).

Conclusion: These findings suggested that hBSC-derived exosomal miR-217 may act as oncogene in bladder cancer cells, and that Hippo-YAP signaling pathway maybe the target for miR-217 in the bladder cancer cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-021-01494-7DOI Listing

Publication Analysis

Top Keywords

bladder cancer
12
cancer cell
8
exosomal mir-217
8
mir-217 mimic
8
mimic inhibitor
8
cell lines
8
t24 5367
8
bladder
6
cell
6
bladder mesenchymal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!