Single cell multiomic analysis of T cell exhaustion in vitro.

Cytometry A

Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA.

Published: January 2022

T-cell activation is a key step in the amplification of an immune response. Over the course of an immune response, cells may be chronically stimulated, with some proportion becoming exhausted; an enormous number of molecules are involved in this process. There remain a number of questions about the process, namely: (1) what degree of heterogeneity and plasticity do T-cells exhibit during stimulation? (2) how many unique cell states define chronic stimulation? and (3) what markers discriminate activated from exhausted cells? We addressed these questions by performing single-cell multiomic analysis to simultaneously measure expression of 38 proteins and 399 genes in human T cells expanded in vitro. This approach allowed us to study -with unprecedented depth-how T cells change over the course of chronic stimulation. Comprehensive immunophenotypic and transcriptomic analysis at day 0 enabled a refined characterization of T-cell maturational states and the identification of a donor-specific subset of terminally differentiated T-cells that would have been otherwise overlooked using canonical cell classification schema. As expected, activation downregulated naïve-cell markers and upregulated effector molecules, proliferation regulators, co-inhibitory and co-stimulatory receptors. Our deep kinetic analysis further revealed clusters of proteins and genes identifying unique states of activation, defined by markers temporarily expressed upon 3 days of stimulation (PD-1, CD69, LTA), markers constitutively expressed throughout chronic activation (CD25, GITR, LGALS1), and markers uniquely up-regulated upon 14 days of stimulation (CD39, ENTPD1, TNFDF10); expression of these markers could be associated with the emergence of short-lived cell types. Notably, different ratios of cells expressing activation or exhaustion markers were measured at each time point. These data reveal the high heterogeneity and plasticity of chronically stimulated T cells. Our study demonstrates the power of a single-cell multiomic approach to comprehensively characterize T-cells and to precisely monitor changes in differentiation, activation, and exhaustion signatures during cell stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293072PMC
http://dx.doi.org/10.1002/cyto.a.24496DOI Listing

Publication Analysis

Top Keywords

multiomic analysis
8
immune response
8
chronically stimulated
8
heterogeneity plasticity
8
single-cell multiomic
8
activation exhaustion
8
markers
7
activation
6
cell
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!