In this work, a novel and effective hydrochar was prepared by hydrothermal treatment of Prunus serrulata bark to remove the pesticide atrazine in river waters. The hydrothermal treatment has generated hydrochar with a rough surface and small cavities, favoring the atrazine adsorption. The adsorption equilibrium time was not influenced by different atrazine concentrations used, being reached after 240 min. The Elovich adsorption kinetic model presented the best adjustment to the kinetic data. The Langmuir model presented the greatest compliance to the isotherm data and indicated a higher affinity between atrazine and hydrochar, reaching a maximum adsorption capacity of 63.35 mg g. Thermodynamic parameters showed that the adsorption process was highly spontaneous, endothermic, and favorable, with a predominance of physical attraction forces. In treating three real river samples containing atrazine, the adsorbent showed high removal efficiency, being above 70 %. The hydrochar from Prunus serrulata bark waste proved highly viable to remove atrazine from river waters due to its high efficiency and low precursor material cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15366-4 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Zoology, Akwa Ibom State University, Ikot Akpaden, Nigeria.
Background: Routine epidemiological data are essential for monitoring the effectiveness of preventive chemotherapy (PC), optimizing resource allocation, and addressing the evolving needs in the elimination of soil-transmitted helminthiasis (STH). This study assesses the prevalence, intensity, and associated risk factors of STH following five rounds of albendazole-based PC in three implementation units (IUs) in Ondo State, Nigeria.
Methodology: Fresh stool samples were collected from 2,093 children aged 5-14 years across 45 systematically selected schools in three IUs: Ese-Odo, Irele, and Ile-Oluji.
Environ Sci Pollut Res Int
January 2025
Central Pollution Control Board, MoEF & CC, Government of India, New Delhi, India.
The swift industrial expansion has posed significant environmental challenges, particularly in the context of water pollution. Industrial effluents consist of substantial amounts of harmful pollutants that enter the main rivers via various tapped and untapped drains/local water streams, causing alterations in their physical and chemical properties. This study investigated 153 grossly polluting industries (GPIs) that were identified to release their effluents into the main rivers through different drains within multiple sectors in the industrial zone of four northern states of India in 2023.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India.
Environmental factors play a fundamental role in shaping fish assemblage in aquatic ecosystems. The present study describes the fish assemblage structure on the spatial scale in Pong Reservoir, which lies in foothills of the Northwestern Himalaya within the river Beas basin. Through sophisticated enviro assessment techniques, using ArcGIS mapping, this study provides valuable insight into how physicochemical factors shape the fish assemblage in the reservoir.
View Article and Find Full Text PDFGround Water
January 2025
Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
Continental glaciations during the Pleistocene Epoch created complex systems of aquifers and aquitards across many northern regions of the Earth. The low hydraulic conductivities of glacial till aquitards suggest that limited recharge will reach the underlying aquifers, potentially preserving old groundwaters. Here, we characterize the recharge history in intertill and buried valley aquifers in Saskatchewan, Canada using C, H, He δH, δO, and major ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!