Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epidemiologic studies have shown that the fine particulate matter 2.5 (PM2.5) exaggerates chronic airway inflammation involving in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Surfactant proteins (SPs) decreases significantly related to airflow limitation and airway inflammation. However, how to restore the reduction of SPs levels in airway inflammation exposed to PM2.5 has not been well understood. In the present study, the SPs including SPA, SPB, SPC and SPD levels in bronchoalveolar lavage fluid (BALF) were detected from patients with stable COPD. Rats were exposed to cigarette smoke and PM2.5. After given with Surfaxin, the expression of SPs, protein kinase C (PKC) and tight junction protein (ZO-1) in lung tissue and the levels of C-reactive protein (CRP) and fibrinogen (FIB) in plasma was observed. The results showed that SPA, SPB and SPD were significantly lower than those of the control group (p < 0.01). PM2.5 aggravated smoking-induced airway inflammation and oxidative stress demonstrated by pathological changes of lung tissue and increased levels of CRP and PKC in vivo. PM2.5 decreased the expression of all the SPs and ZO-1, which could be significantly restored by Surfaxin. These findings indicate that Surfaxin protects the alveolar epithelium from PM2.5 in airway inflammation through increasing SPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2021.111864 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!