Anaerobic biotransformation mechanism of marine toxin domoic acid.

J Hazard Mater

Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China.

Published: January 2022

Domoic acid (DA) is a major marine neurotoxin, occurs frequently in most of the world's coastlines and seriously threatens ecosystem and public health. However, information on its biotransformation process in coastal anaerobic environments remains unclear. In this study, the underlying mechanism of anaerobic biotransformation of DA by marine consortium GLY was investigated using the combination of liquid chromatography-high-resolution Orbitrap mass spectrometry and comparative metatranscriptomics analysis. The results demonstrated that DA could be cometabolically biotransformed under anaerobic conditions with pseudo-first-order reaction. Anaerobic biotransformation pathway of DA was clarified, including decarboxylation, dehydrogenation, carboxylation activation with CoA and multiple β-oxidation steps occurring at aliphatic side chain, which facilitated DA detoxification. Furthermore, anaerobic cometabolic biotransformation mechanism of glycine-DA by consortium GLY was established for the first time, a number of genes related to the metabolic pathways of glycine fermentation, fatty acid synthesis and β-oxidation were responded in the consortium GLY transcriptome and involved in the anaerobic biotransformation of DA. This study could deepen understanding of interaction mechanism between toxin DA and marine microorganisms, which provides a new insight into the DA fate and its effects on benthic microbial community in marine environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126798DOI Listing

Publication Analysis

Top Keywords

anaerobic biotransformation
16
consortium gly
12
biotransformation mechanism
8
domoic acid
8
anaerobic
7
marine
5
biotransformation
5
mechanism
4
mechanism marine
4
marine toxin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!