A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing environmental water requirement for groundwater-dependent vegetation in arid inland basins by combining the copula joint distribution function and the dual objective optimization: An application to the Turpan Basin, China. | LitMetric

Assessing environmental water requirement for groundwater-dependent vegetation in arid inland basins by combining the copula joint distribution function and the dual objective optimization: An application to the Turpan Basin, China.

Sci Total Environ

Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:

Published: December 2021

Preserving groundwater-dependent terrestrial ecosystems through environmental water allocation is critical for sustainable development in arid inland basins. Assessing the environmental water requirement is challenging due to the complex relationship between vegetation growth and groundwater depth. This study proposed a new assessment method by combining the copula joint distribution function and the dual objective optimization. The copula joint distribution function was used to describe the relationship between vegetation and groundwater depth instead of the traditional regression analysis. Given an ecological protection target, the conditional probability of achieving the target was estimated using the copula joint distribution. The groundwater depth interval with relatively high probability was suitable for vegetation growth and correspondingly conducive for ecological protection. In addition to ecological protection, the socio-economic water requirement was incorporated into the environmental water assessment, resulting in a dual optimization problem that could be resolved by the ideal point method. The optimization analysis revealed a groundwater depth with a high probability of successful ecological protection and low groundwater evapotranspiration to balance vegetation and human demands for groundwater. The proposed method of environmental water assessment by combing copula joint distribution function and dual objective optimization was applied in the Turpan Basin, an arid inland basin in Northwest China. The environmental groundwater depth ranged between 6 and 20 m, and the optimized interval was 7-8 m. The optimal environmental groundwater depth resulted in a probability of 0.46 to achieve the ecological protection target and annual evapotranspiration of 983 mm. The proposed method was practical and reliable and could be an effective tool for assessing the environmental water requirement of groundwater-dependent vegetation in arid inland basins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149323DOI Listing

Publication Analysis

Top Keywords

environmental water
24
groundwater depth
24
copula joint
20
joint distribution
20
ecological protection
20
water requirement
16
arid inland
16
distribution function
16
assessing environmental
12
inland basins
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!