In this study, a 1000 L/d capacity one-off on-site wastewater treatment system was operated for over a year as a pilot alternative to the conventional on-site treatment as currently used in urban Bhutan. An up-flow anaerobic sludge blanket (UASB) was used for blackwater treatment (to replace "septic tank followed by an anaerobic biofilter (ABF) (to replace soak pits) for the treatment of a mixture of greywater and UASB effluent. Shredded waste plastic bottles were used as the novel biofilter media in the ABF. During a yearlong operation, the pilot system produced a final treated effluent from ABF with average BOD 28 mg/L, COD 38 mg/L, TSS 85 mg/L and 5 log units of Escherichia coli. These effluents met three out of four of the national effluent discharge limits of Bhutan, but unsuccessful to meet the Escherichia coli standard over a yearlong operation. Further, process optimisation may enable more significant Escherichia coli removal. An economic analysis indicates that the total unit cost (capital and operating expenditures) of this alternative wastewater treatment system for more than 50 users range between USD 0.27-0.37/person/month comparable to USD 0.29-0.42/person/month for the current predominant on-site system, i.e., "septic tanks". This pilot study, therefore, indicates that this wastewater treatment system using shredded waste plastic biofilter media has high potential to replace the current conventional treatment, i.e., "septic tanks", which are often overloaded with greywater and discharging effluents which does not meet the national standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.131729 | DOI Listing |
Chemosphere
December 2024
Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFEnviron Res
December 2024
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, PR China. Electronic address:
This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan. Electronic address:
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:
Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
With the widespread use of typical antibiotics such as sulfamethazine (SMT), it leads to their accumulation in the environment, increasing the risk of the spread of antibiotic resistance genes (ARGs). Aerobic granular sludge (AGS) has shown great potential in treating antibiotic wastewater. However, the long cultivation period of AGS, the easy disintegration of particles and the poor stability of degradation efficiency for highly concentrated antibiotic wastewater are still urgent problems that need to be solved, and it is important to explore the migration and changes of ARGs and microbial diversity in AGS systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!