AI Article Synopsis

  • The study aimed to evaluate if the feature-fusion (FF) method enhances the single-shot detector's (SSD) ability to identify small brain metastases on contrast-enhanced T1-weighted MRI.
  • A total of 234 MRI scans from patients were analyzed, comparing SSDs with and without an FF module to determine detection performance using metrics like sensitivity and positive-predictive value (PPV).
  • Results showed that the FF-SSD algorithm achieved high sensitivity, especially for lesions larger than 6 mm, and significantly improved detection of lesions smaller than 3 mm compared to baseline SSD performance.

Article Abstract

Background And Purpose: To examine whether feature-fusion (FF) method improves single-shot detector's (SSD's) detection of small brain metastases on contrast-enhanced (CE) T1-weighted MRI.

Methods: The study included 234 MRI scans from 234 patients (64.3 years±12.0; 126 men). The ground-truth annotation was performed semiautomatically. SSDs with and without an FF module were developed and trained using 178 scans. The detection performance was evaluated at the SSDs' 50% confidence threshold using sensitivity, positive-predictive value (PPV), and the false-positive (FP) per scan with the remaining 56 scans.

Results: FF-SSD achieved an overall sensitivity of 86.0% (95% confidence interval [CI]: [83.0%, 85.6%]; 196/228) and 46.8% PPV (95% CI: [42.0%, 46.3%]; 196/434), with 4.3 FP (95% CI: [4.3, 4.9]). Lesions smaller than 3 mm had 45.8% sensitivity (95% CI: [36.1%, 45.5%]; 22/48) with 2.0 FP (95% CI: [1.9, 2.1]). Lesions measuring 3-6 mm had 92.3% sensitivity (95% CI: [86.5%, 92.0%]; 48/52) with 1.8 FP (95% CI: [1.7, 2.2]). Lesions larger than 6 mm had 98.4% sensitivity (95% CI: [97.8%, 99.4%]; 126/128) 0.5 FP (95% CI: [0.5, 0.8]) per scan. FF-SSD had a significantly higher sensitivity for lesions < 3 mm (p = 0.008, t = 3.53) than the baseline SSD, while the overall PPV was similar (p = 0.06, t = -2.16). A similar trend was observed even when the detector's confidence threshold was varied as low as 0.2, for which the FF-SSD's sensitivity was 91.2% and the FP was 9.5.

Conclusions: The FF-SSD algorithm identified brain metastases on CE T1-weighted MRI with high accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jon.12916DOI Listing

Publication Analysis

Top Keywords

brain metastases
12
sensitivity 95%
12
95%
9
detection small
8
small brain
8
confidence threshold
8
sensitivity
7
feature-fusion improves
4
improves mri
4
mri single-shot
4

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Objective: This study focuses on epidermal growth factor receptor-mutated lung adenocarcinoma, known for frequent brain metastasis. It aimed to compare the clinical outcomes and cost-effectiveness of combining Gamma Knife radiosurgery (GKRS) with tyrosine kinase inhibitors (TKIs) (GKRS+TKI group) versus TKIs alone (TKI group) for the treatment of patients with newly diagnosed brain metastasis in this condition.

Methods: Study characteristics of the two groups were matched using inverse probability of treatment weighting (IPTW).

View Article and Find Full Text PDF

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Progress in investigating pituitary stalk lesions: A review.

Medicine (Baltimore)

January 2025

Department of Endocrinology and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, P.R. China.

Pituitary stalk lesions are uncommon and are typically identified through pituitary magnetic resonance imaging and screening for causes of diabetes insipidus. Recent literature indicates that pituitary stalk lesions primarily manifest as pituitary stalk interruption syndrome and thickening of the pituitary stalk. The etiology of these lesions is complex and can be divided into major categories: congenital disorders, inflammatory or infectious diseases, and tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!