Comparison of oxidative potential of PM1 and PM2.5 urban aerosol and bioaccessibility of associated elements in three simulated lung fluids.

Sci Total Environ

Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.

Published: December 2021

PM1 and PM2.5 aerosol samples collected during four seasons were analysed for bioaccessibility of 21 elements and oxidative potential (OP) determined by the dithiothreitol (DTT) assay in three simulated lung fluids (SLFs): deionised water, simulated alveoli fluid and Gamble's solution. Most elements had higher bioaccessibility in the submicron fraction than in the fine size fraction. The bioaccessibility of the element not only depends on the aerosol size fraction, but also varies between the three SLFs. In addition, the bioaccessibility of elements depends on both their chemical compound and the composition of the SLF. A very high bioaccessibility (up to 98%) was observed for As, Sb and Cd in all studied SLFs. The lowest bioaccessibility was observed for Ti, Al and Fe. The OP of urban particulate matter (PM), was studied as a relevant metric for health effects. The difference of OP value in simulated alveoli fluid and Gamble's solution compared to deionised water indicate the crucial effect of individual SLFs' composition on the OP. The complexation of elements with different ligands present in the solution can influence OP depletion and, therefore, the potential health effects of inhaled aerosol. The correlation coefficients between total or bioaccessible concentrations of studied elements and volume normalised OP were calculated to examine the relationship between the elements and the OP. The strong positive correlations between some elements (i.e. Cd, Pb, As, Zn, Sn, Cu, Co, Ni, Mn) and DTT activity suggest their participation in the oxidative activity of PM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149502DOI Listing

Publication Analysis

Top Keywords

oxidative potential
8
pm1 pm25
8
elements
8
three simulated
8
simulated lung
8
lung fluids
8
bioaccessibility elements
8
deionised water
8
simulated alveoli
8
alveoli fluid
8

Similar Publications

Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.

View Article and Find Full Text PDF

Prophylactic and therapeutic effects of EsV3 on atherosclerotic lesions in ApoE mice.

BMC Cardiovasc Disord

January 2025

Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Atherosclerosis (AS) is a major contributor to vascular disorders and represents a significant risk to human health. Currently, first-line pharmacotherapies are associated with substantial side effects, and the development of atherosclerosis is closely linked to dietary factors. This study evaluated the effects of a dietary supplement, EsV3, on AS in apolipoprotein E (ApoE) model mice.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) is a prevalent chronic condition characterized by inflammation and oxidative stress, particularly in individuals over 40. Dietary factors, specifically dietary acid load (DAL), may influence these pathological processes. However, the relationship between DAL and inflammatory markers, oxidative stress, and clinical features in patients with KOA remains unexplored.

View Article and Find Full Text PDF

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

The death of osteoblasts induced by glucocorticoid (GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head (SIONFH). Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH. Isovitexin has demonstrated antioxidant properties, but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!