Lysosome is one of the important organelles in intracellular transport. It plays a significant role in the physiological process. The lysosomal microenvironment affects the functions of lysosome. When the original acidic environment of lysozyme is destroyed or the fluid viscosity increases gradually, various diseases are easily induced. However, most fluorescent probes can only locate in cells. The fewer probes of subcellular organelles were found and their functions are often single. So, it is of great importance to design multifunctional fluorescent probes with the capable of localizing in lysosome. In this study, a novel lysosome probe, 4-(4-Pyren-1-yl-but-3-enyl)-morpholine (PIM), was synthesized using pyrene as a fluorescent group and morpholine as a target group. The introduction of morpholine group made PIM localize in lysosome with high selectivity. The fluorescence will be enhanced with the increased viscosity because of restricting the rotation of CC bond and CN in PIM, and the detecting linear range is from 4.05 cP to 393.48 cP, which qualified the requirement of the viscosity monitoring in body. Meanwhile, the fluorescence intensity of PIM declines with the decrease of pH because the Schiff base of PIM is hydrolyzed, which was affirmed by H NMR, LC-MS and fluorescence spectra. Moreover, cell imaging and MTT experiments confirmed that PIM as a novel bifunctional probe can be used to detect pH and endogenous viscosity in lysosome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.120228 | DOI Listing |
Anal Chim Acta
February 2025
Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China. Electronic address:
Background: Lysosomes, as an indispensable subcellular organelle have numerous physiological functions closely associated with HS and viscosity, and accurate assessment of HS/viscosity fluctuations in lysosomes is essential for gaining a comprehensive understanding of lysosome-related physiological activities and pathological processes. The previous single-response fluorescent probes for either HS or viscosity alone have the potential to generate "false positive" signals in a complex biological environment. In contrast, dual-locked probes can simultaneously respond to multiple targets simultaneously, which could effectively eliminate this defect.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China. Electronic address:
Peroxynitrite (ONOO) and viscosity are critical indicators of lysosome functionality, intimately linked to numerous diseases' pathophysiological processes. Hence, creating reliable analytical techniques to observe fluctuations in lysosomal ONOO and viscosity is highly important. This study presents the development of a novel naphthalimide-based fluorescent probe, Nap-Cy, specifically designed to target lysosomes and simultaneously detect both ONOO and viscosity.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, PR China. Electronic address:
The visualization and subsequent monitoring of apoptosis holds paramount significance in the domains of physiology, pathology, and pharmacology. However, traditional probes require high staining concentrations and multiple washing steps, which would alter the specimen's micro-environment, potentially inducing harm to specimen. To overcome these challenging issues, we have rationally designed and prepared a pH-inert lysosomal probe (named IVTI) to wash-free visualize apoptosis with ultra-low concentration to alleviate the disturbance of probe concentration, washing procedure and pH variations.
View Article and Find Full Text PDFChemistry
December 2024
Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
Dipolar fluorescent molecular rotors (FMRs) are environmentally-sensitive fluorophores that can be used in bioimaging applications to sense local viscosity and polarity. Their sensitivity to viscosity can also be used for the fluorogenic labeling of biomolecules such as DNA or proteins. In particular, we have previously used FMRs to develop a series of tunable fluorogens targeting the self-labeling protein tag Halotag for wash-free protein imaging in live cells.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
Dead cell sorting is pivotal and plays a very significant role in homeostasis. Apoptosis and ferroptosis are the two major regulatory cell death processes. Apoptosis is a programmed cell death process, while ferroptosis is a regulatory cell death process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!