AI Article Synopsis

  • This study focuses on improving the methods for extracting and segmenting rat brains from diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) images, which are essential for researching ischemic stroke.
  • The research introduces a new framework using geometric deformable models for brain extraction and employs a refined feature detection algorithm for accurately segmenting the brain hemispheres.
  • Results demonstrate that this new approach significantly outperforms existing methods, achieving high accuracy with average Dice scores of 97.13% for DWI and 97.42% for T2WI in brain extraction, and low Hausdorff distances in hemisphere segmentation.

Article Abstract

Purpose: Experimental ischemic stroke models play an essential role in understanding the mechanisms of cerebral ischemia and evaluating the development of pathological extent. An important precursor to the investigation of ischemic strokes associated with rodents is the brain extraction and hemisphere segmentation in rat brain diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) images. Accurate and reliable image segmentation tools for extracting the rat brain and hemispheres in the MR images are critical in subsequent processes, such as lesion identification and injury analysis. This study is an attempt to investigate rat brain extraction and hemisphere segmentation algorithms that are practicable in both DWI and T2WI images.

Methods: To automatically perform brain extraction, the proposed framework is based on an efficient geometric deformable model. By introducing an additional image force in response to the rat brain characteristics into the skull stripping model, we establish a unique rat brain extraction scheme in DWI and T2WI images. For the subsequent hemisphere segmentation, we develop an efficient brain feature detection algorithm to approximately separate the rat brain. A refinement process is enforced by constructing a gradient vector flow in the proximity of the midsurface, where a parametric active contour is attracted to achieve hemisphere segmentation.

Results: Extensive experiments with 55 DWI and T2WI subjects were executed in comparison with the state-of-the-art methods. Experimental results indicated that our rat brain extraction and hemisphere segmentation schemes outperformed the competitive methods and exhibited high performance both qualitatively and quantitatively. For rat brain extraction, the average Dice scores were 97.13% and 97.42% in DWI and T2WI image volumes, respectively. Rat hemisphere segmentation results based on the Hausdorff distance metric revealed average values of 0.17 and 0.15 mm for DWI and T2WI subjects, respectively.

Conclusions: We believe that the established frameworks are advantageous to facilitate preclinical stroke investigation and relevant neuroscience research that requires accurate brain extraction and hemisphere segmentation using rat DWI and T2WI images.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.15157DOI Listing

Publication Analysis

Top Keywords

rat brain
36
brain extraction
32
hemisphere segmentation
28
dwi t2wi
24
extraction hemisphere
20
brain
13
segmentation rat
12
t2wi images
12
rat
11
extraction
8

Similar Publications

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Finding new ways to treat overdoses.

Elife

January 2025

Department of Pharmaceutical Sciences, University of Kentucky, Lexington, United States.

Reversing opioid overdoses in rats using a drug that does not enter the brain prevents the sudden and severe withdrawal symptoms associated with therapeutics that target the central nervous system.

View Article and Find Full Text PDF

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!