The objective of this work was to evaluate the photocatalytic activity of zinc oxide catalysts supported on natural zeolite clinoptilolite for photocatalytic degradation of the drug hydroxychloroquine, used in the treatment of malaria and which has been tested in the treatment of COVID-19. To synthesize 10%ZnOCP and 15%ZnOCP catalysts, the wet impregnation methodology was used. The raw and synthesized catalysts were characterized by XRD, SEM, XRF, BET, DRS, PCZ, FT-IR and PL. The degradation of hydroxychloroquine was calculated using UV-vis absorption from the samples before and after the photocatalytic process. The maximum percentage of degradation (96%) was obtained with the operational parameters of C = 10 mg L; C = 2 g L of 15%ZnOCP; pH = 7.5; UV-A radiation. Ecotoxicological tests against the bioindicators Lactuca sativa and Artemia salina confirmed the reduction of effluent toxicity after treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2021.265 | DOI Listing |
Environ Res
January 2025
Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China.
For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.
View Article and Find Full Text PDFMolecules
January 2025
Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR 10000 Zagreb, Croatia.
Rhabdophane, CePO∙HO, nanoparticles were prepared by mechanochemical synthesis with different durations and thoroughly characterized by various characterization techniques. X-ray diffraction analysis showed that the optimal synthesis duration was 15 min, since, in this case, pure rhabdophane is obtained, without traces of contamination by the vessel material. The size of the obtained nanoparticles, as determined from high-resolution transmission electron microscopy images, was around 5 nm.
View Article and Find Full Text PDFMolecules
January 2025
Department of Applied Chemistry, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.
View Article and Find Full Text PDFMolecules
January 2025
Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, Kunming University, Kunming 650214, China.
A covalent organic framework (COF) has emerged as a promising photocatalyst for the removal of pharmaceutical and personal care product (PPCP) contaminants; however, high-performance COF photocatalysts are still scarce. In this study, three COF photocatalysts were successfully synthesized by the condensation of benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde (BTT) with 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT), 1,3,5-Tris(4-aminophenyl)benzene (TAPB), and 4,4',4''-nitrilotris(benzenamine) (TAPA), namely, BTT-TAPA, BTT-TAPB, and BTT-TAPT, respectively. The surface areas of BTT-TAPA, BTT-TAPB, and BTT-TAPT were found to be 800.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!