Background: Oxidative stress is implicated in the neuropathology of bipolar disorder (BD). We investigated the association of single-nucleotide polymorphisms (SNPs) in the antioxidative genes superoxide dismutase 2 (SOD2) and glutathione peroxidase 3 (GPX3) with structural neuroimaging phenotypes in youth BD.
Methods: SOD2 rs4880 and GPX3 rs3792797 SNP genotypes, along with structural magnetic resonance imaging, were obtained from 147 youth (BD = 75; healthy controls = 72). Images were processed using FreeSurfer, yielding surface area, volume, and thickness values for regions of interest (prefrontal cortex [PFC], caudal anterior cingulate cortex, hippocampus) and for vertex-wise whole-brain analysis. Analyses controlled for age, sex, race, and intracranial volume for volume, area, and thickness analyses.
Result: Regions of interest analyses revealed diagnosis-by-SOD2 rs4880 interaction effects for caudal anterior cingulate cortex volume and surface area as well as PFC volume; in each case, there was lower volume/area in the BD GG genotype group vs the healthy controls GG genotype group. There was a significant BD diagnosis × GPX3 rs3793797 interaction effect for PFC surface area, where area was lower in the BD A-allele carrier group vs the other genotype groups. Vertex-wise analyses revealed significant interaction effects in frontal, temporal, and parietal regions related to smaller brain structure in the BD SOD2 rs4880 GG group and BD GPX3 rs3793797 A-allele carrier group.
Conclusion: We found preliminary evidence that SOD2 rs4880 and GPX3 rs3792797 are differentially associated with brain structures in youth with BD in regions that are relevant to BD. Further studies incorporating additional neuroimaging phenotypes and blood levels of oxidative stress markers are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832218 | PMC |
http://dx.doi.org/10.1093/ijnp/pyab056 | DOI Listing |
Genes Nutr
January 2025
Department of Nutrition, University of Oslo (UiO), Oslo, Norway.
Background: One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.
View Article and Find Full Text PDFMol Biol Rep
November 2024
Department of Zoology, GC University, Lahore, Pakistan.
Background: Oral cancer (OC) is a significant global health concern, with Pakistan ranking 5th worldwide in OC incidence. Given the poor prognosis, early detection of at-risk individuals is crucial. Genetic factors, particularly single nucleotide polymorphisms (SNPs) in metabolic genes, may influence OC susceptibility.
View Article and Find Full Text PDFClin Gastroenterol Hepatol
November 2024
Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden. Electronic address:
Background & Aims: Oxidative stress is an essential factor in the pathogenesis of inflammatory bowel disease (IBD). A previous study found protective potential of some antioxidative nutrients against IBD. However, the association between total antioxidant capacity (TAC) of the diet and incident IBD is unclear.
View Article and Find Full Text PDFCell Mol Neurobiol
October 2024
Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Free Radic Biol Med
October 2024
Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India. Electronic address:
Background: Chronic Obstructive Pulmonary Disease (COPD) is a persistent inflammatory lung condition characterized by an obstruction in removing oxygen from the lungs. Oxidant and antioxidant imbalance have long been hallmarks of COPD development, where the amount of antioxidants produced is less than that of oxidants. Here, polymorphism in the antioxidant enzymes like Catalase, Superoxide dismutase and Glutathione peroxidase plays an essential role in regulating the levels of oxidants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!