A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tunable Band-Edge Potentials and Charge Storage in Colloidal Tin-Doped Indium Oxide (ITO) Nanocrystals. | LitMetric

Degenerately doped metal-oxide nanocrystals (NCs) show localized surface plasmon resonances (LSPRs) that are tunable via their tunable excess charge-carrier densities. Modulation of excess charge carriers has also been used to control magnetism in colloidal doped metal-oxide NCs. The addition of excess delocalized conduction-band (CB) electrons can be achieved through aliovalent doping or by postsynthetic techniques such as electrochemistry or photodoping. Here, we examine the influence of charge-compensating aliovalent dopants on the potentials of excess CB electrons in free-standing colloidal degenerately doped oxide NCs, both experimentally and through modeling. Taking Sn:InO (ITO) NCs as a model system, we use spectroelectrochemical techniques to examine differences between aliovalent doping and photodoping. We demonstrate that whereas photodoping introduces excess CB electrons by the Fermi level relative to the CB edge, aliovalent impurity substitution introduces excess CB electrons by the CB edge relative to an externally defined Fermi level. Significant differences are thus observed electrochemically between spectroscopically similar delocalized CB electrons compensated by aliovalent dopants and those compensated by surface cations (e.g., protons) during photodoping. Theoretical modeling illustrates the very different potentials that arise from charge compensation via aliovalent substitution and surface charge compensation. Spectroelectrochemical titrations allow the ITO NC band-edge stabilization as a function of Sn doping to be quantified. Extremely large capacitances are observed in both InO and ITO NCs, making these NCs attractive for reversible charge-storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c04660DOI Listing

Publication Analysis

Top Keywords

excess electrons
12
potentials charge
8
degenerately doped
8
doped metal-oxide
8
aliovalent doping
8
aliovalent dopants
8
ito ncs
8
introduces excess
8
fermi level
8
charge compensation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!