The assessment of CASP models for utility in molecular replacement is a measure of their use in a valuable real-world application. In CASP7, the metric for molecular replacement assessment involved full likelihood-based molecular replacement searches; however, this restricted the assessable targets to crystal structures with only one copy of the target in the asymmetric unit, and to those where the search found the correct pose. In CASP10, full molecular replacement searches were replaced by likelihood-based rigid-body refinement of models superimposed on the target using the LGA algorithm, with the metric being the refined log-likelihood-gain (LLG) score. This enabled multi-copy targets and very poor models to be evaluated, but a significant further issue remained: the requirement of diffraction data for assessment. We introduce here the relative-expected-LLG (reLLG), which is independent of diffraction data. This reLLG is also independent of any crystal form, and can be calculated regardless of the source of the target, be it X-ray, NMR or cryo-EM. We calibrate the reLLG against the LLG for targets in CASP14, showing that it is a robust measure of both model and group ranking. Like the LLG, the reLLG shows that accurate coordinate error estimates add substantial value to predicted models. We find that refinement by CASP groups can often convert an inadequate initial model into a successful MR search model. Consistent with findings from others, we show that the AlphaFold2 models are sufficiently good, and reliably so, to surpass other current model generation strategies for attempting molecular replacement phasing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881082PMC
http://dx.doi.org/10.1002/prot.26214DOI Listing

Publication Analysis

Top Keywords

molecular replacement
24
replacement assessment
8
replacement searches
8
diffraction data
8
rellg independent
8
models
6
molecular
6
replacement
6
assessing utility
4
utility casp14
4

Similar Publications

Introduction: Patients with suspected bacterial infection frequently receive empiric, broad-spectrum antibiotics prior to pathogen identification due to the time required for bacteria to grow in culture. Direct-from-blood diagnostics identifying the presence or absence of bacteria and/or resistance genes from whole blood samples within hours of collection could enable earlier antibiotic optimisation for patients suspected to have bacterial infections. However, few randomised trials have evaluated the effect of using direct-from-blood bacterial testing on antibiotic administration and clinical outcomes.

View Article and Find Full Text PDF

A lipidated peptide derived from the C-terminal tail of the vasopressin 2 receptor shows promise as a new β-arrestin inhibitor.

Pharmacol Res

January 2025

Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:

β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.

View Article and Find Full Text PDF

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.

View Article and Find Full Text PDF

A three-dimensional mouse liver organoid platform for assessing EDCs metabolites simulating liver metabolism.

Environ Int

January 2025

Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Department of Food and Animal Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 00826, Republic of Korea; Green Bio Science & Technology, Bio-Food Industrialization, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea. Electronic address:

Hepatic metabolism is an important process for evaluate the potential activity and toxicity of endocrine disrupting chemicals (EDCs) metabolites. Organization for Economic Co-operation and Development (OECD) has advocated the development of in vitro assays that mimic in vivo hepatic metabolism to eventually replace classical animal tests. In response to this need, we established a 3D mouse liver organoid (mLO) platform that mimics the animal model and is distinct from existing models.

View Article and Find Full Text PDF

Aortic valve calcification results from degenerative processes associated with several pathologies. These processes are influenced by age, chronic inflammation, and high concentrations of phosphate ions in the plasma, which contribute to induce mineralization in the aortic valve and deterioration of cardiovascular health. Environmental factors, such as wood smoke that emits harmful and carcinogenic pollutants, carbon monoxide (CO), and nitrogen oxide (NO), as well as other reactive compounds may also be implicated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!