Developmental coordination disorder (DCD) is a neurodevelopmental disorder occurring in 5-6% of school-aged children. Converging evidence suggests that dysfunction within cortico-striatal and cortico-cerebellar networks may contribute to motor deficits in DCD, yet limited research has examined the brain morphology of these regions. Using T1-weighted magnetic resonance imaging the current study investigated cortical and subcortical volumes in 37 children with DCD, aged 8 to 12 years, and 48 controls of a similar age. Regional brain volumes of the thalamus, basal ganglia, cerebellum and primary motor and sensory cortices were extracted using the FreeSurfer recon-all pipeline and compared between groups. Reduced volumes within both the left and right pallidum (Left: F = 4.43, p = 0.039; Right: F = 5.24, p = 0.025) were observed in children with DCD; however, these results did not withstand correction for multiple comparisons. These findings provide preliminary evidence of altered subcortical brain structure in DCD. Future studies that examine the morphology of these subcortical regions are highly encouraged in order replicate these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761714PMC
http://dx.doi.org/10.1007/s11682-021-00502-yDOI Listing

Publication Analysis

Top Keywords

subcortical brain
8
brain structure
8
developmental coordination
8
coordination disorder
8
children dcd
8
dcd
5
subcortical
4
children
4
structure children
4
children developmental
4

Similar Publications

Targeted exonic sequencing identifies novel variants in a cerebral small vessel disease cohort.

Clin Chim Acta

December 2024

Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia. Electronic address:

Background And Aims: Cerebral small vessel diseases (CSVDs) are a set of conditions that affect the small blood vessels in the brain and can cause severe neurological pathologies such as stroke and vascular dementia. The most common monogenic CSVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) which is caused by mutations in NOTCH3. However, only 15-20% of CADASIL cases referred for genetic testing have pathogenic mutations in NOTCH3.

View Article and Find Full Text PDF

Purpose: The neurobiological heterogeneity present in schizophrenia remains poorly understood. This likely contributes to the limited success of existing treatments and the observed variability in treatment responses. Our objective was to employ magnetic resonance imaging (MRI) and machine learning (ML) algorithms to improve the classification of schizophrenia and its subtypes.

View Article and Find Full Text PDF

Subtypes of brain change in aging and their associations with cognition and Alzheimer's disease biomarkers.

Neurobiol Aging

December 2024

Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway.

Structural brain changes underlie cognitive changes and interindividual variability in cognition in older age. By using structural MRI data-driven clustering, we aimed to identify subgroups of cognitively unimpaired older adults based on brain change patterns and assess how changes in cortical thickness, surface area, and subcortical volume relate to cognitive change. We tested (1) which brain structural changes predict cognitive change (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease biomarkers, and (3) the degree of overlap between clusters derived from different structural modalities in 1899 cognitively healthy older adults followed up to 16 years.

View Article and Find Full Text PDF

Sports participation & childhood neurocognitive development.

Dev Cogn Neurosci

December 2024

Physical Education and Sports Science Department, National Institute of Education, Nanyang Technological University, Singapore. Electronic address:

Various psychosocial factors like collaboration inherent to team sports might provide a more dynamic environment for cognitive challenges that could foster enhanced neurocognitive development compared to individual sports. We investigated the impact of different organised sports on neurocognitive development in children (N = 11,878; aged 9-11) from the Adolescent Brain Cognitive Development (ABCD) study. Participants were classified into four categories based on their sports involvement at baseline and two years later: none, individual-based, team-based, or both.

View Article and Find Full Text PDF

More Than the Sum of Its Parts: Disrupted Core Periphery of Multiplex Brain Networks in Multiple Sclerosis.

Hum Brain Mapp

January 2025

Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Disruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modalities to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions from 13 European centers within the MAGNIMS network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!