Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications. Unfortunately, their unique traits ensure that they pose a major threat to the environment. While literature on freshwater microplastic contamination has grown over the recent years, research undertaken in rapidly developing countries, where plastic production and use are increasing dramatically, has lagged behind that in other parts of the world. In the South East Asia (SEA) region, basic information on levels of contamination is very limited and, as a consequence, the risk to human and ecological health remains hard to assess. This review synthesises what is currently known about microplastic contamination of freshwater ecosystems in SEA, with a particular focus on Malaysia. The review 1) summarises published studies that have assessed levels of contamination in freshwater systems in SEA, 2) discusses key sources and transport pathways of microplastic in freshwaters, 3) outlines what is known of the impacts of microplastic on freshwater organisms, and 4) identifies key knowledge gaps related to our understanding of the transport, fate and effects of microplastic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15826-x | DOI Listing |
Sci Rep
January 2025
Department of Computer Science, Kebri Dehar University, 250, Kebri Dehar, Ethiopia.
The Internet of Things (IoT)-based smart solutions have been developed to predict water quality and they are becoming an increasingly important means of providing efficient solutions through communication technologies. IoT systems are used for enabling connection between various devices based on the ability to gather and collect information. Furthermore, IoT systems are designed to address the environment and the automation industry.
View Article and Find Full Text PDFNat Commun
January 2025
Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany.
During the Pleistocene-Holocene transition, the dominant mammoth steppe ecosystem across northern Eurasia vanished, in parallel with megafauna extinctions. However, plant extinction patterns are rarely detected due to lack of identifiable fossil records. Here, we introduce a method for detection of plant taxa loss at regional (extirpation) to potentially global scale (extinction) and their causes, as determined from ancient plant DNA metabarcoding in sediment cores (sedaDNA) from lakes in Siberia and Alaska over the past 28,000 years.
View Article and Find Full Text PDFProc Biol Sci
January 2025
School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
Characterizing how organisms respond to transient temperatures may further our understanding of their susceptibility to climate change. Past studies in the freshwater turtle, , have demonstrated that the timing and duration of heat waves can have major implications for the response of genes involved in gonadal development and the production of female hatchlings. Yet, no study has considered how the response of these genes to transient cold snap exposure may affect gonadal development and the production of males.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France.
Cytoplasmic male sterility (CMS) originates from a mito-nuclear conflict where mitochondrial genes induce male sterility and nuclear genes restore male fertility in hermaphrodites. The first observation of CMS in animals was reported recently in the freshwater snail where it is associated with two extremes divergent mitotypes D and K. The D individuals are male-steriles while male fertility is restored by nuclear genes in K and are found mixed with the most common male-fertile N mitotype in natural populations (i.
View Article and Find Full Text PDFJ Virol
January 2025
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
Unlabelled: Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!