AI Article Synopsis

  • Chinese hamster ovary (CHO) cells are crucial for producing monoclonal antibodies and other complex biotherapeutics using metabolic selection marker technologies like glutamine synthetase (GS) and dihydrofolate reductase (DHFR).
  • A new selection marker system based on CHO cells' need for proline was developed using pyrroline-5-carboxylase synthetase (P5CS), which allowed engineered cells to thrive in proline-free conditions, comparable to standard CHO cell growth in proline-rich environments.
  • By combining the P5CS and GS selection systems, researchers successfully created CHO cell lines that improved recombinant protein expression, leading to higher yields of a challenging monoclonal antibody during production.

Article Abstract

Chinese hamster ovary (CHO) cells are the leading mammalian cell host employed to produce complex secreted recombinant biotherapeutics such as monoclonal antibodies (mAbs). Metabolic selection marker technologies (e.g. glutamine synthetase (GS) or dihydrofolate reductase (DHFR)) are routinely employed to generate such recombinant mammalian cell lines. Here we describe the development of a selection marker system based on the metabolic requirement of CHO cells to produce proline, and that uses pyrroline-5-carboxylase synthetase (P5CS) to complement this auxotrophy. Firstly, we showed the system can be used to generate cells that have growth kinetics in proline-free medium similar to those of the parent CHO cell line, CHOK1SV GS-KO™ grown in proline-containing medium. As we have previously described how engineering lipid metabolism can be harnessed to enhance recombinant protein productivity in CHO cells, we then used the P5CS selection system to re-engineer lipid metabolism by over-expression of either sterol regulatory element binding protein 1 (SREBF1) or stearoyl CoA desaturase 1 (SCD1). The cells with re-engineered proline and lipid metabolism showed consistent growth and P5CS, SCD1 and SREBF1 expression across 100 cell generations. Finally, we show that the P5CS and GS selection systems can be used together. A GS vector containing the light and heavy chains for a mAb was super-transfected into a CHOK1SV GS-KO™ host over-expressing SCD1 from a P5CS vector. The resulting stable transfectant pools achieved a higher concentration at harvest for a model difficult to express mAb than the CHOK1SV GS-KO™ host. This demonstrates that the P5CS and GS selection systems can be used concomitantly to enable CHO cell line genetic engineering and recombinant protein expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346673PMC
http://dx.doi.org/10.1016/j.mec.2021.e00179DOI Listing

Publication Analysis

Top Keywords

cho cells
12
chok1sv gs-ko™
12
lipid metabolism
12
p5cs selection
12
selection system
8
engineering lipid
8
chinese hamster
8
hamster ovary
8
mammalian cell
8
selection marker
8

Similar Publications

Sex differences in the outcomes of advanced renal cell carcinoma (RCC) treated with immune checkpoint inhibitors (ICIs) and the profiles of tumor-infiltrating immune cells (TIICs) remain unclear. We retrospectively evaluated data from 563 patients with RCC receiving systemic therapy, including first-line dual ICI combinations (i.e.

View Article and Find Full Text PDF

Diversity in Notch ligand-receptor signaling interactions.

Elife

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.

View Article and Find Full Text PDF

Background: Beta-2 microglobulin (β2m) is a component of the major histocompatibility complex class I (MHC-I) playing a crucial role in the immune system on cell surface, but it can be separated from the MHC-I and exist in biological fluid independently. Numerous reports have shown that β2m is a systemic pro-aging factor impairing cognitive function, and that it is increased in the blood and CSF of patients with Alzheimer's disease (AD). While β2m in the body fluid has been recognized as a potential factor in AD and aging, the development of therapeutic agents, especially those directly targeting β2m using antibodies, may face challenges.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Huddersfield, Huddersfield, Yorkshire, United Kingdom.

Background: Alzheimer's Disease research lacks a suitable model to match the sporadic version of Alzheimer's Disease (SAD). We a propose a model that will use 7PA2 cells which is a CHO modified to express the V717F mutation for APP (Indiana mutation). The 7PA2 cells will then be placed inside alginate microbeads to produce a factory that constantly produces amyloid species.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with a human mortality rate of up to 30%, posing a significant threat to public health. However, the lack of suitable research models has impeded the development of effective human vaccines. In this study, we engineered transgenic mice (3xTg) using a novel construct that simultaneously expresses three C-type Lectin receptors, identified as critical SFTSV entry receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!