Blood-brain barrier (BBB) damage after ischemia significantly influences stroke outcome. Compound LFHP-1c was previously discovered with neuroprotective role in stroke model, but its mechanism of action on protection of BBB disruption after stroke remains unknown. Here, we show that LFHP-1c, as a direct PGAM5 inhibitor, prevented BBB disruption after transient middle cerebral artery occlusion (tMCAO) in rats. Mechanistically, LFHP-1c binding with endothelial PGAM5 not only inhibited the PGAM5 phosphatase activity, but also reduced the interaction of PGAM5 with NRF2, which facilitated nuclear translocation of NRF2 to prevent BBB disruption from ischemia. Furthermore, LFHP-1c administration by targeting PGAM5 shows a trend toward reduced infarct volume, brain edema and neurological deficits in nonhuman primate model with tMCAO. Thus, our study identifies compound LFHP-1c as a firstly direct PGAM5 inhibitor showing amelioration of ischemia-induced BBB disruption and , and provides a potentially therapeutics for brain ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343116 | PMC |
http://dx.doi.org/10.1016/j.apsb.2021.01.008 | DOI Listing |
Funct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFTransl Res
January 2025
Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy. Electronic address:
The use of e-cigarettes has grown rapidly in recent years, raising concerns about their impact on human health, particularly on critical physiological barriers such as the blood-brain barrier (BBB), alveolar-capillary barrier, and vascular systems. This systematic review evaluates the current literature on the effects of e-cigarette exposure on these barrier systems. E-cigarettes, regardless of nicotine content, have been shown to induce oxidative stress, inflammation, and disruption of tight junction proteins, leading to impaired barrier function.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi, India-110017.
Neurodisease, caused by undesired substances, can lead to mental health conditions like depression, anxiety and neurocognitive problems like dementia. These substances can be referred to as contaminants that can cause damage, corruption, and infection or reduce brain functionality. Contaminants, whether conceptual or physical, have the ability to disrupt many processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!