Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure. This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix. To this aim, the co-assembly behaviour of a carboxylated variant of xyloglucan (CXG) with a peptide amphiphile (PA-H3) has been investigated to generate hierarchical constructs with tuneable molecular composition, structure, and properties. Transmission electron microscopy and circular dichroism at a low concentration shows that CXG and PA-H3 co-assemble into nanofibres by hydrophobic and electrostatic interactions and further aggregate into nanofibre bundles and networks. At a higher concentration, CXG and PA-H3 yield hydrogels that have been characterized for their morphology by scanning electron microscopy and for the mechanical properties by small-amplitude oscillatory shear rheological measurements and compression tests at different CXG/PA-H3 ratios. A preliminary biological evaluation has been carried out both with HaCat cells and in a mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355605PMC
http://dx.doi.org/10.1093/rb/rbab040DOI Listing

Publication Analysis

Top Keywords

peptide amphiphile
8
wound healing
8
electron microscopy
8
concentration cxg
8
cxg pa-h3
8
wound
6
carboxylated-xyloglucan peptide
4
amphiphile co-assembly
4
co-assembly wound
4
healing hydrogel
4

Similar Publications

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.

View Article and Find Full Text PDF

Background/objectives: Peptide amphiphile micelles (PAMs) are an exciting nanotechnology currently being studied for a variety of biomedical applications, especially for drug delivery. Specifically, PAMs can enhance in vivo trafficking, cell-targeting, and cell interactions/internalization. However, modifying peptides, as is commonly performed to induce micellization, can influence their bioactivity.

View Article and Find Full Text PDF

Niosomal Encapsulation of Anti-Cancer Peptides: A Revolutionary Strategy in Cancer Therapy.

Curr Pharm Biotechnol

January 2025

Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science & Technology, CHARUSAT At- Changa, Dist- Anand, Ta- Petlad, Pin-388421.

Cancer treatment has evolved significantly over the years, incorporating a range of modalities including surgery, radiation, chemotherapy, and immunotherapy. However, challenges such as drug resistance, systemic toxicity, and poor targeting necessitate innovative approaches. Peptides have gained attention in cancer therapy due to their specificity, potency, and ability to modulate various biological pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!