A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of electrode spacing on the performance of bioretention cell coupled with MFC. | LitMetric

The influence of electrode spacing on the performance of bioretention cell coupled with MFC.

R Soc Open Sci

College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, People's Republic of China.

Published: August 2021

In order to explore the influence of electrode spacing on the performance of the enhanced bioretention system, four bioretention cells with microbial fuel cell (BRC-MFC) systems with different electrode spacing were designed, and the effect of electrode spacing on system performance was revealed by analysing its water treatment capacity and electricity production efficiency. The results showed that BRC-MFC had good water treatment capacity and could produce electricity simultaneously. Compared with other BRC-MFC systems with spacing, the BRC3 system (with an electrode spacing of 30 cm) had significant water treatment capacity under different organic loads, especially under high organic load (C/N = 10) operation, COD removal rate was as high as 98.49%, removal rate was as high as 97%, and it had a higher output voltage of 170.46 ± 6.17 mV. It could be seen that proper electrode spacing can effectively improve the water treatment capacity of the BRC-MFC system. This study provided a feasible method for improving the performance of the BRC-MFC system, and revealed the relevant mechanism. A proper electrode spacing with sufficient carbon sources could effectively improve the water treatment capacity of the BRC-MFC system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334848PMC
http://dx.doi.org/10.1098/rsos.202024DOI Listing

Publication Analysis

Top Keywords

electrode spacing
28
water treatment
20
treatment capacity
20
brc-mfc system
12
influence electrode
8
spacing
8
spacing performance
8
brc-mfc systems
8
removal rate
8
rate high
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!