Regulator of G protein signaling 20 (RGS20) has been shown to be highly expressed in various types of cancer. The present study aimed to investigate the effects of RGS20 in patients with renal cell carcinoma (RCC) and in RCC cells. Bioinformatics analysis was performed to analyze the role of RGS20 in RCC. Quantitative PCR and western blotting were used to determine the mRNA and protein expression levels of RGS20 in cells, respectively. After RGS20 inhibition, the proliferation, apoptosis, migration and invasiveness of A-498 cells were tested using MTT assay, EdU assay, propidium iodide staining, Annexin V-FITC/PI kit, wound healing assay and Transwell assay. High RGS20 expression was closely associated with the progression and immune infiltration of RCC, and may be considered as an independent indicator of poor prognosis in RCC. After knocking down RGS20, the proliferation, migration and invasiveness of cells were impaired, the cell cycle was arrested at the G/G phase, and the level of apoptosis was increased. In addition, the mRNA expression levels of securin, CDC20 and cyclin B1 were decreased in RGS20-knockdown cells. RGS20 expression was significantly associated with the infiltration level of activated CD4 T cells, type 1 T helper cells and activated dendritic cells. In summary, RGS20 expression was associated with RCC progression and poor prognosis; thus, it may be used to estimate the prognosis of RCC and may serve as a new potential treatment strategy for RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299006PMC
http://dx.doi.org/10.3892/ol.2021.12904DOI Listing

Publication Analysis

Top Keywords

rgs20 expression
16
rgs20
9
renal cell
8
cell carcinoma
8
rcc
8
cells
8
expression levels
8
cells rgs20
8
migration invasiveness
8
poor prognosis
8

Similar Publications

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Emanuel syndrome is a rare genetic disorder linked to microcephaly, heart problems, cleft palate, and developmental delays, with no established prenatal screening method.
  • Researchers analyzed transcriptome data from samples with a specific chromosomal translocation (t(11;22)(q23;q11)) to identify differentially expressed genes (DEGs) using various bioinformatics techniques, resulting in the identification of 50 DEGs.
  • Five key genes, including ZAP70, were pinpointed as potential early diagnostic markers for Emanuel syndrome, highlighting ZAP70's association with chromosomal imbalances.
View Article and Find Full Text PDF

Background: Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways.

View Article and Find Full Text PDF

The objective of this study was to construct a prognostic model by utilizing serine/glycine metabolism-related genes (SGMGs), thus establishing a risk score for lung adenocarcinoma (LUAD). Based on the TCGA-LUAD and SGMG data set, two subtypes with different SGMG expression levels were identified by clustering analysis. Thirteen differential expression genes were used to construct RiskScore by Cox regression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!