Capicua (Cic), a transcriptional repressor frequently mutated in brain cancer oligodendroglioma, is highly expressed in adult neurons. However, its function in the dendritic growth of neurons in the hippocampus remains poorly understood. Here, we confirmed that Cic was expressed in hippocampal neurons during the main period of dendritogenesis, suggesting that Cic has a function in dendrite growth. Loss-of-function and gain-of function assays indicated that Cic plays a central role in the inhibition of dendritic morphogenesis and dendritic spines . Further studies showed that overexpression of Cic reduced the expression of Ets in HT22 cells, while knockdown of Cic in hippocampal neurons significantly elevated the expression of Ets. These results suggest that Cic may negatively control dendrite growth through Ets, which was confirmed by ShRNA knockdown of either Etv4 or Etv5 abolishing the phenotype of Cic knockdown in cultured neurons. Taken together, our results suggest that Cic inhibits dendritic morphogenesis and the growth of dendritic spines through Ets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353115PMC
http://dx.doi.org/10.3389/fnana.2021.669310DOI Listing

Publication Analysis

Top Keywords

dendritic morphogenesis
12
hippocampal neurons
12
cic
9
dendrite growth
8
dendritic spines
8
expression ets
8
dendritic
6
neurons
6
ets
5
capicua regulates
4

Similar Publications

Neuropeptides: The Evergreen Jack-of-All-Trades in Neuronal Circuit Development and Regulation.

Bioessays

December 2024

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Neuropeptides are key modulators of adult neurocircuits, balancing their sensitivity to both excitation and inhibition, and fine-tuning fast neurotransmitter action under physiological conditions. Here, we reason that transient increases in neuropeptide availability and action exist during brain development for synapse maturation, selection, and maintenance. We discuss fundamental concepts of neuropeptide signaling at G protein-coupled receptors (GPCRs), with a particular focus on how signaling at neuropeptide GPCRs could underpin neuronal morphogenesis.

View Article and Find Full Text PDF

The Houge type of X-linked syndromic intellectual developmental disorder (MRXSHG) encompasses a spectrum of neurodevelopmental disorders characterized by intellectual disability (ID), language/speech delay, attention issues, and epilepsy. These conditions arise from hemizygous or heterozygous deletions, along with point mutations, affecting CNKSR2, a gene located at Xp22.12.

View Article and Find Full Text PDF

The neuronal Golgi in neural circuit formation and reorganization.

Front Neural Circuits

December 2024

Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.

The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration.

View Article and Find Full Text PDF
Article Synopsis
  • Mill, also known as fennel, shows promising neurotrophic effects on rat hippocampal neurons, particularly through its ethanol extract (FVSE) and active ingredient anethole.
  • Results indicate that both FVSE and anethole support neurite outgrowth and enhance synapse formation in a safe, non-toxic manner, peaking at specific concentrations.
  • The study suggests that FVSE influences key neurotrophic pathways linked to neuronal health and has potential therapeutic applications for neurological disorders while highlighting anethole's significant role in this process.
View Article and Find Full Text PDF

Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!