CdSe quantum dots are the most studied Cd-based quantum dots with their high quantum yield, high photostability, narrow emission band, and easy synthesis procedure. They are frequently used to develop light emitting diode (LED) due to their unique photophysical properties; however, their narrow emission band causes a challenge to design white LEDs because white light emission requires emission in multiple wavelengths with broad emission bands. Here in this study, we developed CdSe quantum dots with a narrow band-edge emission band and broad defect-state emission band through a modified two-phase synthesis method. Our results revealed that defect-state emission is directly linked to the surface of quantum dots and can be excited through exciting surfactant around the quantum dot. The effect of surfactant on emission properties of CdSe quantum dots diminished upon growing a shell around CdSe quantum dots; as a result, surface-dependent defect-state emission cannot be observed in gradient heterogeneous alloyed CdSSe quantum dots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326488 | PMC |
http://dx.doi.org/10.3906/kim-2101-66 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China.
Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis.
View Article and Find Full Text PDFCurr Drug Targets
January 2025
Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.
Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
To realize the optical transfer of electron spin information, developing a semiconductor layer for efficient transport of spin-polarized electrons to the active layers is necessary. In this study, electron spin transport from a GaAs/AlGaAs superlattice (SL) barrier to InGaAs quantum dots (QDs) is investigated at room temperature through a combination of time-resolved photoluminescence and rate equation analysis, separating the two transport processes from the GaAs layer around the QDs and SL barrier. The electron transport time in the SL increases for a thicker quantum well (QW) of SL due to the weaker wavefunction overlap between adjacent QWs.
View Article and Find Full Text PDFLuminescence
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, People's Republic of China.
Ultraviolet (UV) irradiation is dangerous and can cause serious skin diseases if skin is excessively exposed to it. Thus, it is highly desirable for human health to monitor the UV radiation intensity. In this report, a flexible and stretchable dual-response UV radiation detector is reported by integrating UV-responsive color-switchable WO quantum dots (QDs) with an electrical hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!