Production of biopharmaceuticals relies on the expression of mammalian cDNAs in host organisms. Here we show that the expression of a human cDNA in the moss Physcomitrium patens generates the expected full-length and four additional transcripts due to unexpected splicing. This mRNA splicing results in non-functional protein isoforms, cellular misallocation of the proteins and low product yields. We integrated these results together with the results of our analysis of all 32,926 protein-encoding Physcomitrella genes and their 87,533 annotated transcripts in a web application, physCO, for automatized optimization. A thus optimized cDNA results in about twelve times more protein, which correctly localizes to the ER. An analysis of codon preferences of different production hosts suggests that similar effects occur also in non-plant hosts. We anticipate that the use of our methodology will prevent so far undetected mRNA heterosplicing resulting in maximized functional protein amounts for basic biology and biotechnology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361020PMC
http://dx.doi.org/10.1038/s42003-021-02486-3DOI Listing

Publication Analysis

Top Keywords

expression human
8
human cdna
8
cdna moss
8
protein isoforms
8
moss spliced
4
spliced mrnas
4
mrnas fragmentary
4
protein
4
fragmentary protein
4
isoforms production
4

Similar Publications

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Background: Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.

J Exp Clin Cancer Res

January 2025

Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.

Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.

View Article and Find Full Text PDF

The endonuclease activity of MCPIP1 controls the neoplastic transformation of epithelial cells via the c-Met/CD44 axis.

Cell Commun Signal

January 2025

Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!