Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG. To date, no standard cellularization method or cell type has been established to create the ideal TEVG by promoting its long-term patency and function. In this review, advances in VTE are described and discussed with a particular focus on the construction approaches of cellularized small-caliber TEVGs, the cell types used, as well as their preclinical and clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361171 | PMC |
http://dx.doi.org/10.1038/s41536-021-00155-x | DOI Listing |
Front Cardiovasc Med
November 2022
Centro Cardiologico Monzino, IRCCS, Milan, Italy.
The constantly increasing incidence of coronary artery disease worldwide makes necessary to set advanced therapies and tools such as tissue engineered vessel grafts (TEVGs) to surpass the autologous grafts [(i.e., mammary and internal thoracic arteries, saphenous vein (SV)] currently employed in coronary artery and vascular surgery.
View Article and Find Full Text PDFNPJ Regen Med
August 2021
Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG.
View Article and Find Full Text PDFAdv Healthc Mater
May 2021
Department of Bioengineering, University of Washington, 850 Republican St., Seattle, WA, 98109, USA.
Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary-scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre-formed microvessels is used to successfully create perfusable and cellularized organ-specific microvascular structures at anatomic scale within collagen hydrogels.
View Article and Find Full Text PDFActa Biomater
March 2017
Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan. Electronic address:
Unlabelled: Sphingosine-1-phosphate (S1P) has been known to promote endothelial cell (EC) proliferation and protect Syndecan-1 (SDC1) from shedding, thereby maintaining this antithrombotic signal. In the present study, we investigated the effect of S1P in the construction of a functional tissue-engineered blood vessel by using human endothelial cells and decellularized human umbilical vein (DHUV) scaffolds. Both human umbilical vein endothelial cells (HUVEC) and human cord blood derived endothelial progenitor cells (EPC) were seeded onto the scaffold with or without the S1P treatment.
View Article and Find Full Text PDFTissue Eng Part A
January 2017
1 Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel .
Effective cellularization is a key approach to prevent small-caliber (<4 mm) tissue-engineered vascular graft (TEVG) failure and maintain patency and contractility following implantation. To achieve this goal, however, improved biomimicking designs and/or relatively long production times (typically several months) are required. We previously reported on porcine carotid artery decellularization yielding biomechanically stable and cell supportive small-caliber (3-4 mm diameter, 5 cm long) arterial extracellular matrix (scaECM) vascular grafts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!