A globally increased demand for fuels and environmental concerns regarding fossil sources call for sustainable alternatives. Fast pyrolysis is a promising approach for converting different types of biomass to renewable Fast Pyrolysis Bio-Oil (FPBO) that can be used for heating, power generation and mobility. Side-products emerging from the process include low calorific gases and charcoal. Both are further combusted to generate energy for the process. From the charcoal, the process leaves behind fly ashes (FAs) that contain macro- and micronutrients. In this regard, FPBO-FAs might present valuable soil fertilizers, but also bear the risk of soil heavy metal (HM) contamination. In this study, the risk and potential benefit of FPBO-FAs derived from three different biomass sources (bark, forest residue and Miscanthus sp.) as soil amendments was tested. Twice, in autumn 2017 and 2018, FPBO-FAs were applied to the field (500 kg ash ha y) in a grassland experiment. Neither physico-chemical and microbiological soil properties nor plant yield were affected following FPBO-FAs application. Seasonal differences and changes from year to year, however, were evident, both for some soil and plant properties. The lack of effects on (i) plant yield, (ii) soil microbiological and physicochemical properties, (iii) heavy metal concentrations in soil and plant suggest that the product may safely be applied. The fact that these field-trial results are in discordance with previous greenhouse trials suggest, however, that long-term trials would be needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113479DOI Listing

Publication Analysis

Top Keywords

fast pyrolysis
12
plant yield
12
fly ashes
8
pyrolysis bio-oil
8
soil
8
soil properties
8
properties plant
8
heavy metal
8
soil plant
8
plant
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!