Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To develop an easy-to-perform combined model in human corneal epithelial cells (HCECs) and Balb/c mice macrophages J774.A1 (MP) for preliminary screening of potential ophthalmic therapeutic substances.
Methods: HCECs were exposed to different osmolarities (350-500 mOsm/L) and MTT assay was employed for cell survival and flow cytometry to assess apoptosis-necrosis and relative cell size (RCS) distribution. Effectiveness of Betaine, L-Carnitine, Taurine at different concentrations (ranging from 20 mM to 200 mM) was studied. Also, mucoadhesive polymers such as Hyaluronic acid (HA) and Hydroxypropylmethylcellulose (HPMC) (0.4 and 0.8%) were evaluated. Cells were pre-incubated with the compounds (8h) and then exposed to hyperosmotic stress (470 mOsm/L) for 16h. Moreover, anti-inflammatory activity was performed in LPS-stimulated MP.
Results: Exposure to hyperosmotic solutions between 450 and 500 mOsm/L promoted the highest cell death after 16h exposures (p < 0.0001) with a drop in viability to 34.96% ± 11.77 for 470 mOsm/L. Pre-incubation with Betaine at 150 mM and 200 mM provided the highest cell survival against hyperosmolarity (66.01% ± 3.65 and 65.90% ± 0.78 respectively) while HA 0.4% was the most effective polymer in preventing cell death (42.2% ± 3.60). Flow cytometry showed that Betaine and Taurine at concentrations between 150-200 mM and 20-80 mM respectively presented the highest anti-apoptotic activity. Also, HA and HPMC polymers reduced apoptotic-induced cell death. All osmoprotectants modified RCS, and polymers increased their value over 100%. L-Carnitine 50 mM, Taurine 40 mM and HA 0.4% presented the highest TNF-α inhibition activity (60%) albeit all of them showed anti-inflammatory inhibition percentages higher than 20% CONCLUSIONS: HCECs hyperosmolar model combined with inflammatory conditions in macrophages allows the screening of osmoprotectants by simulating chronic hyperosmolarity (16h) and inflammation (24h).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2021.108723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!