The present studies report the use of an ecofriendly biomass Ficus religiosa in untreated (UFR) and xanthate treated (XFR) forms for the Cd (II) ions removal in a fixed bed column. FTIR, SEM-EDS, BET surface area, and elemental analysis (CHNS) techniques were used to characterize the biosorbents. The acquired data supported FTIR findings regarding the nature of functional groups present in the materials. Packed bed continuous flow studies explored the effects of various parameters such as Cd (II) ion concentration (100 mg/L-300 mg/L), bed heights (5 cm-30 cm), pH (3-5), at a constant linear flow rate (~1.13 cm/min). The obtained S-shaped breakthrough curves indicated the efficiency of the packed bed for the Cd (II) removal. Breakthrough time and exhaust times increased (67.5 min-390 min and 292.5 min-1852.5 min) (97.5 min-442.5 min and 345 min-1920 min) for unmodified and modified respectively with bed heights. The BDST, Thomas, and Yoon-Nelson models were used to evaluate the experimental results. The Yoon-Nelson model describes the breakthrough data more efficiently compared to other models. Under similar conditions, the modified material exhibited 400% increased capacity (55.20 mg/g) than that of unmodified material (13.33 mg/g). Thus, xanthate modification significantly enhanced the capacity for Cd (II) ions from aqueous solutions. PRACTITIONER POINTS: Xanthate modification of Ficus religiosa is an environmentally friendly process. Modified and unmodified materials were utilized for Cd (II) removal in fixed bed column process which is industrially viable process. Low inlet Cd (II) concentration at pH 5 and higher bed height favored the continuous flow process at fixed flow rate. Modification caused an increase of about 400% in the capacity of material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.1625 | DOI Listing |
Mikrobiyol Bul
October 2024
University of Health Sciences, Ankara Bilkent City Health Application and Research Center, Clinic of Medical Microbiology, Ankara, Türkiye.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus has mutated at a high rate since the beginning of the pandemic, leading to the formation of different variants. Alpha, Beta, Gamma, Delta and Omicron have emerged as concerning variants identified by the World Health Organization (WHO). The Omicron variant and its sublineages became dominant worldwide in 2022.
View Article and Find Full Text PDFThe aquifer in the subseafloor igneous basement is a massive, continuous microbial substrate, yet sparingly little is known about life in this habitat. The work to date has focused largely on describing microbial diversity in the young basement (<10 Ma), where the basaltic crust is still porous and fluid flow through it is active. Here, we test the hypothesis that microbial life exists in subseafloor basement >65 Ma using samples collected from the Louisville Seamount Chain via seafloor drilling.
View Article and Find Full Text PDFBJUI Compass
December 2024
Miller School of Medicine Desai Sethi Urology Institute, University of Miami Miami Florida USA.
Introduction: Water Jet Ablation Therapy (WJAT) and Holmium Laser Enucleation of the Prostate (HoLEP) represent two common surgical treatments for Benign Prostatic Hyperplasia (BPH). Despite their increasing use, there is no study between these two methods. We aim to evaluate their efficacy and safety through a network meta-analysis (NMA), providing critical insights for clinical decision-making in the management of moderate to severe lower urinary tract symptoms (LUTS) due to BPH.
View Article and Find Full Text PDFLab Anim Res
January 2025
Physiology, Animal Development, and Biomedical Science Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia.
Ischemic stroke (IS) is the most recorded case of stroke that is caused by decreased blood flow to the brain. Nowadays, therapeutical agents for IS are limited and they have not shown maximum clinical results. Therefore, the exploration of new candidates for IS treatment continues to be done.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
This study describes a microfluidic thread-based analytical device (μTAD) capable of in situ mass spectrometric analysis for continuous flow reaction monitoring. Organic reaction screening is foundational to drug discovery. Microfluidic devices are of special interest here because they provide continuous reaction monitoring with advantages such as the use of smaller reagent volumes and short analysis times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!