Upper and lower motor neuron pathologies are critical to the autopsy diagnosis of amyotrophic lateral sclerosis (ALS). Further investigation is needed to determine how the relative burden of these pathologies affects the disease course. We performed a blinded, retrospective study of 38 ALS patients, examining the association between pathologic measures in motor cortex, hypoglossal nucleus, and lumbar cord with clinical data, including progression rate and disease duration, site of symptom onset, and upper and lower motor neuron signs. The most critical finding in our study was that TAR DNA-binding protein 43 kDa (TDP-43) pathologic burden in lumbar cord and hypoglossal nucleus was significantly associated with a faster progression rate with reduced survival (p < 0.02). There was no correlation between TDP-43 burden and the severity of cell loss, and no significant clinical associations were identified for motor cortex TDP-43 burden or severity of cell loss in motor cortex. C9orf72 expansion was associated with shorter disease duration (p < 0.001) but was not significantly associated with pathologic measures in these regions. The association between lower motor neuron TDP-43 burden and fast progression with reduced survival in ALS provides further support for the study of TDP-43 as a disease biomarker.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433592PMC
http://dx.doi.org/10.1093/jnen/nlab061DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
8
lateral sclerosis
8
upper lower
8
lower motor
8
motor neuron
8
hypoglossal nucleus
8
lumbar cord
8
progression rate
8
fast progression
4
progression amyotrophic
4

Similar Publications

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

Neurological diseases are central nervous system (CNS) disorders affecting the whole body. Early diagnosis of the diseases is difficult due to the lack of disease-specific tests. Adding new biomarkers external to the CNS facilitates the diagnosis of neurological diseases.

View Article and Find Full Text PDF

Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart.

View Article and Find Full Text PDF

Decoding TDP-43: the molecular chameleon of neurodegenerative diseases.

Acta Neuropathol Commun

December 2024

Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.

TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!