Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sit-to-stand movement (STS) is a mundane activity, controlled by the central-nervous-system (CNS) via a complex neurophysiological mechanism that involves coordination of limbs for successful execution. Detailed analysis and accurate simulations of STS task have significant importance in clinical intervention, rehabilitation process, and better design for assistive devices. The CNS controls STS motion by taking inputs from proprioceptors. These input signals suffer delay in transmission to CNS making movement control and coordination more complex which may lead to larger body exertion or instability. This paper deals with the problem of STS movement execution in the presence of proprioceptive feedback delays in joint position and velocity. We present a high-gain observer (HGO) based feedback linearization control technique to mimic the CNS in controlling the STS transfer. The HGO estimates immeasurable delayed states to generate input signals for feedback. The feedback linearization output control law generates the passive torques at joints to execute the STS movement. The H2 dynamic controller calculates the optimal linear gains by using physiological variables. The whole scheme is simulated in MATLAB/Simulink. The simulations illustrate physiologically improved results. The ankle, knee, and hip joint position profiles show a high correlation of 0.91, 0.97, 0.80 with the experimentally generated reference profiles. The faster observer dynamics and global boundness of controller result in compensation of delays. The low error and high correlation of simulation results demonstrate (1) the reliability and effectiveness of the proposed scheme for customization of human models and (2) highlight the fact that for detailed analysis and accurate simulations of STS movement the modeling scheme must consider nonlinearities of the system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360614 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256049 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!