Introduction/aims: Duchenne and Becker muscular dystrophies (DMD and BMD, respectively) are characterized by fat replacement of different skeletal muscles in a specific temporal order. Given the structural role of dystrophin in skeletal muscle mechanics, muscle architecture could be important in the progressive pathophysiology of muscle degeneration. Therefore, the aim of this study was to assess the role of muscle architecture in the progression of fat replacement in DMD and BMD.
Methods: We assessed the association between literature-based leg muscle architectural characteristics and muscle fat fraction from 22 DMD and 24 BMD patients. Dixon-based magnetic resonance imaging estimates of fat fractions at baseline and 12 (only DMD) and 24 months were related to fiber length and physiological cross-sectional area (PCSA) using age-controlled linear mixed modeling.
Results: DMD and BMD muscles with long fibers and BMD muscles with large PCSAs were associated with increased fat fraction. The effect of fiber length was stronger in muscles with larger PCSA.
Discussion: Muscle architecture may explain the pathophysiology of muscle degeneration in dystrophinopathies, in which proximal muscles with a larger mass (fiber length × PCSA) are more susceptible, confirming the clinical observation of a temporal proximal-to-distal progression. These results give more insight into the mechanical role in the pathophysiology of muscular dystrophies. Ultimately, this new information can be used to help support the selection of current and the development of future therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290788 | PMC |
http://dx.doi.org/10.1002/mus.27399 | DOI Listing |
Trends Biotechnol
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China. Electronic address:
Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
Western University, London, Ontario, Canada;
Motor unit firing rate (MUFR) and pennation angle were measured concurrently in males and females from submaximal to maximal intensities. Thirty participants, (16F and 14M) performed isometric dorsiflexion contractions at 20%, 40%, 60%, 80% and 100% of maximal voluntary contraction (MVC). During each contraction, measures of MUFR were obtained via surface electromyography decomposition, and muscle fiber pennation angle and fascicle length were obtained via ultrasound.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Sciences, Dubai Medical College for Girls, Muhaisanah-1, Dubai, UAE.
Hypervitaminosis D leads to toxic effects, including hypercalcemia, which can cause severe damage to various organs. Fetuin-A, a glycoprotein with anti-inflammatory properties, may protect tissues from such damage. This study explores the role of Fetuin-A in mitigating hypervitaminosis D-induced damage in renal, hepatic, and cardiac tissues.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia.
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Fundeni Clinical Institute, 022328 Bucharest, Romania.
: Amyloidosis is a disorder characterized by the abnormal folding of proteins, forming insoluble fibrils that accumulate in tissues and organs. This accumulation disrupts normal tissue architecture and organ function, often with serious consequences, including death if left untreated. Light-chain amyloidosis (AL) and hereditary transthyretin-type amyloidosis (hATTR) are two of the most common types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!