A hydrophobic heptapeptide, with sequence AFILPTG, as part of a phage capsid protein binds effectively to silica particles carrying negative charge. Here, we explore the silica binding activity of the sequence as a short polypeptide with polar N and C terminals. To describe the structural changes that occur on binding, we fit experimental infrared, Raman and circular dichroism data for a number of structures simulated in the full configuration space of the hepta-peptide using replica exchange molecular dynamics. Quantum chemistry was used to compute normal modes of infrared and Raman spectra and establish a relationship to structures from MD data. To interpret the circular dichroism data, instead of empirical factoring of optical activity into helical/sheet/random components, we exploit natural transition orbital theory and specify the contributions of backbone amide units, side chain functional groups, water, sodium ions and silica to the observed transitions. Computed optical responses suggest a less folded backbone and importance of the N-terminal when close to silica. We further discuss the thermodynamics of the interplay of charged and hydrophobic moieties of the polypeptide on association with the silica surface. The outcomes of this study may assist in the engineering of novel artificial bio-silica heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp02072b | DOI Listing |
Commun Chem
January 2025
Agri-Bio Research Center, Kaneka Corporation, Takasago, Hyogo, Japan.
Cyclic lipopeptides (CLPs) produced by the genus Bacillus are amphiphiles composed of hydrophilic amino acid and hydrophobic fatty acid moieties and are biosynthesised by non-ribosomal peptide synthetases (NRPSs). CLPs are produced as a mixture of homologues with different fatty acid moieties, whose length affects CLP activity. Iturin family lipopeptides are a family of CLPs comprising cyclic heptapeptides and β-amino fatty acids and have antimicrobial activity.
View Article and Find Full Text PDFSmall
June 2024
CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
pH-dependent peptide biomaterials hold tremendous potential for cell delivery and tissue engineering. However, identification of responsive self-assembling sequences with specified secondary structure remains a challenge. In this work, An experimental procedure based on the one-bead one-compound (OBOC) combinatorial library is developed to rapidly screen self-assembling β-sheet peptides at neutral aqueous solution (pH 7.
View Article and Find Full Text PDFRSC Adv
October 2023
College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 China +86-15011390837.
Ginkgo seed has potential applications in the prevention and treatment of hypertension, but its application in food is limited. Thus, ginkgo seed globulin was hydrolyzed using dual enzymes (Alcalase and thermolysin). After gel column separation, reverse-phase high-performance liquid chromatographic purification, and ESI-MS/MS analysis, five oligopeptides containing fewer than 12 amino acid residues were obtained.
View Article and Find Full Text PDFJ Chem Inf Model
October 2023
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
A major cause of prion infectivity is the early formation of small, fibril-like aggregates consisting of the heptapeptide GNNQQNY. The prion aggregates exhibit a unique stacking mode in which the hydrophobic tyrosine (Y) is exposed outward, forming a bilayer β-sheet-stacking zipper structure. This stacking mode of the prion peptides, termed "Y-outward" structure for convenience, goes against the common understanding that, for other amyloid-forming peptides, the hydrophobic residues should be hidden within the peptide fibril, referred to as "Y-inward" structure.
View Article and Find Full Text PDFTalanta
January 2024
Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China. Electronic address:
Biorecognition components with high affinity and selectivity are vital in bioassay to diagnose and treat epidemic disease. Herein a phage display strategy of combining single-amplification-panning with non-amplification-panning was developed, by which a phage displaying cyclic heptapeptide ACLDWLFNSC (peptide J4) with good affinity and specificity to SARS-CoV-2 spike protein (SP) was identified. Molecular docking suggests that peptide J4 binds to S2 subunit by hydrogen bonding and hydrophobic interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!