Four simple nonfused ring electron acceptors (, , , and ) were designed and synthesized. The use of diphenylamine derivatives as the flanking group for the construction of nonfused ring electron acceptors can improve solubility, avoid the formation of oversized aggregates, and enhance the intramolecular charge-transfer effect to extend absorption spectra. The substituent group at the diphenylamine unit has a great impact on the absorption and energy level of acceptors, electron mobility and morphology of blend films. Unlike the other three acceptors, can form ordered molecular stacking and a face-on orientation in the donor/acceptor blend film. A single-crystal analysis demonstrates that can form a two-dimensional electron transport network. Among these four acceptors, -based organic solar cells provide the highest PCE of 12.28%. Our work has demonstrated that triarylamine is a helpful construction unit for low-cost and high efficiency nonfused ring electron acceptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c09597 | DOI Listing |
Acc Chem Res
December 2024
College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
Angew Chem Int Ed Engl
November 2024
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
High dark current density (J) severely hinders further advancement of near-infrared organic photodetectors (NIR OPDs). Herein, we tackle this grand challenge by regulating molecular crystallinity and aggregation of fully non-fused ring electron acceptors (FNREAs). TBT-V-F, which features fluorinated terminals, notably demonstrates crystalline intensification and a higher prevalence predominance of J-aggregation compared to its chlorinated counterpart (TBT-V-Cl).
View Article and Find Full Text PDFSmall
December 2024
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
Low-cost photovoltaic materials and additive-free, non-halogenated solvent processing of photoactive layers are crucial for the large-scale commercial application of organic solar cells (OSCs). However, high-efficiency OSCs that possess all these advantages remain scarce due to the lack of insight into the structure-property relationship. In this work, three fully non-fused ring electron acceptors (NFREAs), DTB21, DTB22, and DTB23, are reported by utilizing a simplified 1,4-di(thiophen-2-yl)benzene (DTB) core with varied alkoxy chain lengths on the thiophene bridge.
View Article and Find Full Text PDFCurr Top Med Chem
October 2024
Department of Chemistry, Veer Narmad South Gujarat University, Surat-395007, Gujarat, India.
Non-fused pyrimidine scaffold is a significant component for designing new drugs. The review emphasizes the pharmacological importance of non-fused pyrimidine-containing moieties based on the broad spectrum of activities such as antiprotozoal, antibacterial, antimycobacterial, anticancer, anti-inflammatory activity, and CNS depressant. Pyrimidine derivatives are fascinating entities that display biological activities for the treatment of cancer.
View Article and Find Full Text PDFChemistry
December 2024
College of Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
The properties of the active layer materials play a decisive role in determining the power conversion efficiency of organic solar cells (OSCs). Chlorophyll and its derivatives are abundant and environmentally friendly functional organic molecular materials. Using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), we have calculated the absorption spectra and their excited state properties based on optimized ground state structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!