In the liver of genetically diabetic mice (db/db) a rise of CoA and alterations in the structure of its moiety (an increase in CoA/short-chain fatty acyl-CoA and CoA/long-chain fatty acyl-CoA ratios) were found being one of the hyperlipogenesis-providing factors. A rise of the content of CoA in diabetes was caused by the activation of its biosynthesis from vitamin-containing precursors; an increase in the deposition of the latter in panthotenate-protein complexes was also noted. Panthetine and 4'-phosphopanthotenate administration to diabetic animals returned to normal the level of total and free CoA and the ratios of separate components in the structure of coenzyme moiety, and the content of CoA precursors (phosphopantheteine and dephospho-CoA) in the liver.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fatty acyl-coa
8
content coa
8
[coa biosynthesis
4
biosynthesis structure
4
structure reserve
4
reserve liver
4
liver mice
4
mice diabetes
4
diabetes db/db
4
db/db administration
4

Similar Publications

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.

View Article and Find Full Text PDF

ACSL4 Regulates LPS-Induced Ferroptosis in Cardiomyocytes through FASN.

Ann Clin Lab Sci

November 2024

Emergency Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China

Objective: Myocardial injury is a prevalent complication of sepsis. This study aims to shed light on the role of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) in regulating Fatty Acid Synthase (FASN) to identify the intrinsic molecular mechanisms of sepsis-induced myocardial injury.

Method: H9c2 cells were treated with Lipopolysaccharide (LPS) to model sepsis-induced cardiomyocyte injury and were subsequently divided into seven groups: Control, LPS, LPS+sh-NC, LPS+sh-ACSL4, LPS+sh-ACSL4+Erastin, LPS+sh-ACSL4+oe-NC, and LPS+sh-ACSL4+oe-FASN.

View Article and Find Full Text PDF

[Metabolic engineering of for the biosynthesis of O-acetyl-L-homoserine].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

O-acetyl-L-homoserine (OAH) is a promising platform compound for the production of L-methionine and other valuable compounds, while its low yield and low conversion rate limit the industrial application. To solve these problems, we constructed a strain for high OAH production with the previously constructed L-homoserine producer HS33 as the chassis by systematic metabolic engineering. Firstly, PEP accumulation, pyruvate utilization, and OAH synthesis pathway (overexpressing , , and ) were enhanced to obtain an initial strain accumulating 13.

View Article and Find Full Text PDF

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!