Previous studies have shown various metabolic stressors such as saturated fatty acids (SFA) and excess insulin promote insulin resistance in metabolically meaningful cell types (such as skeletal muscle). Additionally, these stressors have been linked with suppressed mitochondrial metabolism, which is also a common characteristic of skeletal muscle of diabetics. This study characterized the individual and combined effects of excess lipid and excess insulin on myotube metabolism and related metabolic gene and protein expression. C2C12 myotubes were treated with either 500 μM palmitate (PAM), 100 nM insulin (IR), or both (PAM-IR). qRT-PCR and western blot were used to measure metabolic gene and protein expression, respectively. Oxygen consumption was used to measure mitochondrial metabolism. Glycolytic metabolism and insulin-mediated glucose uptake were measured via extracellular acidification rate. Cellular lipid and mitochondrial content were measured using Nile Red and NAO staining, respectively. IR and PAM-IR treatments led to reductions in p-Akt expression. IR treatment reduced insulin mediated glucose metabolism while PAM and PAM-IR treatment showed increases with concurrent reductions in mitochondrial metabolism. All three treatments showed suppression in mitochondrial metabolism. PAM and PAM-IR also showed increases in glycolytic metabolism. While PAM and PAM-IR significantly increased lipid content, expression of inflammatory and lipogenic proteins were unaltered. Lastly, PAM-IR reduced BCAT2 protein expression, a regulator of BCAA metabolism. Both stressors independently reduced insulin signaling, mitochondrial function, and cell metabolism, however, only PAM-IR co-treatment significantly reduced the expression of regulators of metabolism not seen with individual stressors, suggesting an additive effect of stressors on metabolic programming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lipd.12315 | DOI Listing |
J Vis Exp
January 2025
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;
A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.
View Article and Find Full Text PDFHepatol Commun
February 2025
Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Unlabelled: High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!