Vaccinations are widely credited with reducing death rates from COVID-19, but the underlying host-viral mechanisms/interactions for morbidity and mortality of SARS-CoV-2 infection remain poorly understood. Acute respiratory distress syndrome (ARDS) describes the severe lung injury, which is pathologically associated with alveolar damage, inflammation, non-cardiogenic edema, and hyaline membrane formation. Because proteostatic pathways play central roles in cellular protection, immune modulation, protein degradation, and tissue repair, we examined the pathological features for the unfolded protein response (UPR) using the surrogate biomarker glucose-regulated protein 78 (GRP78) and co-receptor for SARS-CoV-2. At autopsy, immunostaining of COVID-19 lungs showed highly elevated expression of GRP78 in both pneumocytes and macrophages compared with that of non-COVID control lungs. GRP78 expression was detected in both SARS-CoV-2-infected and un-infected pneumocytes as determined by multiplexed immunostaining for nucleocapsid protein. In macrophages, immunohistochemical staining for GRP78 from deceased COVID-19 patients was increased but overlapped with GRP78 expression taken from surgical resections of non-COVID-19 controls. In contrast, the robust in situ GRP78 immunostaining of pneumocytes from COVID-19 autopsies exhibited no overlap and was independent of age, race/ethnicity, and gender compared with that from non-COVID-19 controls. Our findings bring new insights for stress-response pathways involving the proteostatic network implicated for host resilience and suggest that targeting of GRP78 expression with existing therapeutics might afford an alternative therapeutic strategy to modulate host-viral interactions during SARS-CoV-2 infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357488 | PMC |
http://dx.doi.org/10.1007/s12192-021-01230-4 | DOI Listing |
Objective: Aim: To identify cellular autophagy markers around nickel-containing implant as evidence of metal hypersensitivity reactions in an animal model.
Patients And Methods: Materials and Methods: Rats were sensitized to nickel using a modified model involving the administration of NiSO4 with adjuvants. Subsequently, nickel plate implants (Ni content at 98.
J Exp Pharmacol
December 2024
Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia.
Purpose: Endoplasmic reticulum (ER) stress has a prominent role in the pathogenesis of high-fat diet-induced non-alcohol related fatty liver disease (NAFLD). The aim of this study is to investigate the effects of 6-G on the reduction of ER stress-induced NAFLD in metabolic syndrome (MetS) rats.
Methods: Twenty-five male Sprague-Dawley rats were fed with a high-fat high-fructose (HFHF) diet for 16 weeks.
Int J Biol Macromol
December 2024
Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China. Electronic address:
Chaperonin containing tailless complex polypeptide 1 (CCT) functions as a molecular chaperone and is essential for ensuring proper protein folding. Glucose-regulated protein 78 (GRP78/Bip), also a type of chaperone, not only assists in folding of proteins, but also facilitates the transportation of proteins into the endoplasmic reticulum (ER) via the Sec protein complex. In this study, we identified the CCTη of N.
View Article and Find Full Text PDFExp Cell Res
December 2024
Biology Teaching and Research Office, Tianjin Vocational Institute, Tianjin, China.
Hypoxia-caused spermatogenesis impairment may contribute to male infertility. FOXA2 has been found to be abundant in spermatogonial stem cells and critical for spermatogenesis. Here we aimed to explore the roles of FOXA2 in regulating spermatogonial cells against hypoxia stimulation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
Purpose: The purpose of this study was to investigate the potential roles of endoplasmic reticulum (ER) stress in the development of dry eye disease (DED).
Methods: Single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, derived from corneal tissues of a dry eye mouse model, was processed using the Seurat R program. The results were validated using a scopolamine-induced dry eye mouse model and a hyperosmotic-induced cell model involving primary human corneal epithelial cells (HCECs) and immortalized human corneal epithelial (HCE-2) cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!