Motivation: Quantification of isoform abundance has been extensively studied at the mature RNA level using RNA-seq but not at the level of precursor RNAs using nascent RNA sequencing.

Results: We address this problem with a new computational method called Deconvolution of Expression for Nascent RNA-sequencing data (DENR), which models nascent RNA-sequencing read-counts as a mixture of user-provided isoforms. The baseline algorithm is enhanced by machine-learning predictions of active transcription start sites and an adjustment for the typical 'shape profile' of read-counts along a transcription unit. We show that DENR outperforms simple read-count-based methods for estimating gene and isoform abundances, and that transcription of multiple pre-RNA isoforms per gene is widespread, with frequent differences between cell types. In addition, we provide evidence that a majority of human isoform diversity derives from primary transcription rather than from post-transcriptional processes.

Availability And Implementation: DENR and nascentRNASim are freely available at https://github.com/CshlSiepelLab/DENR (version v1.0.0) and https://github.com/CshlSiepelLab/nascentRNASim (version v0.3.0).

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665767PMC
http://dx.doi.org/10.1093/bioinformatics/btab582DOI Listing

Publication Analysis

Top Keywords

nascent rna-sequencing
12
deconvolution expression
8
expression nascent
8
rna-sequencing data
8
data denr
8
isoform diversity
8
nascent
4
denr
4
denr highlights
4
highlights pre-rna
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a 5-year survival rate of 12%. It has two major molecular subtypes: classical and basal, regulated by the master transcription factors (MTFs) GATA6 and ΔNp63, respectively.

Objective: This study sought to uncover the transcriptional regulatory mechanisms controlling PDAC subtype identity.

View Article and Find Full Text PDF

The eukaryotic genome is broadly transcribed by RNA polymerase II (RNAPII) to produce protein-coding messenger RNAs (mRNAs) and a repertoire of non-coding RNAs (ncRNAs). Whereas RNAPII is very processive during mRNA transcription, it terminates rapidly during synthesis of many ncRNAs, particularly those that arise opportunistically from accessible chromatin at gene promoters or enhancers. The divergent fates of mRNA versus ncRNA species raise many questions about how RNAPII and associated machineries discriminate functional from spurious transcription.

View Article and Find Full Text PDF

The role of cancer cell-released extracellular vesicles: have we become closer to cancer pain treatment?

Extracell Vesicles Circ Nucl Acids

December 2024

Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA.

The effective management of cancer pain continues to be a challenge because of our limited understanding of cancer pain mechanisms and, in particular, how cancer cells interact with neurons to produce pain. In a study published in , Inyang used a mouse model of human papillomavirus (HPV1)-induced oropharyngeal squamous cell carcinoma to show a role for cancer cell-derived extracellular vesicles (cancer sEVs) in cancer pain. They found that inhibiting the release of sEVs reduced spontaneous and evoked pain behaviors, and that pain produced by sEVs is due to activation of TRPV1 channels.

View Article and Find Full Text PDF

DNA supercoiling modulates eukaryotic transcription in a gene-orientation dependent manner.

bioRxiv

January 2025

Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France.

Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .

View Article and Find Full Text PDF

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!