Frozen aqueous electrolytes are ubiquitous and involved in various phenomena occurring in the natural environment. Although salts are expelled from ice during freezing of aqueous solutions, minor amounts of the constituent ions are accommodated in the crystal lattice of ice. This phenomenon was associated with the generation of the Workman-Reynolds freezing potential. Molecular simulations also confirmed the ion incorporation in the crystal lattice of ice Ih upon freezing of aqueous electrolytes and identified possible local structures of the ions. However, no experimental information is available on the structure of ions accommodated in the crystal lattice of ice Ih. In this work, we use X-ray absorption fine structure (XAFS) to study the local structures of K and Cl accommodated in ice Ih single crystals. Previous molecular simulations predicted that ions are trapped in the hexagonal cavities of the ice structure or replace two water molecules in the crystal lattice. Four possible configurations are considered and optimized by the calculations using ONIOM (QM/QM/QM). The results are evaluated in terms of the agreement between the experimental XAFS spectra and those simulated from the optimized structures. The spectra are most reasonably interpreted by assuming that K replaces one water molecule in the ice crystal lattice and is accommodated in a tetrahedral coordination cage. Similarly, Cl probably adopts the same configuration, because it explains the coordination number better than other structures, such as that assuming the replacement of two water molecules belonging to the same hexagonal planes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp01624e | DOI Listing |
Sensors (Basel)
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
This study has investigated the effects of different annealing temperatures on the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films. The analysis focuses on how annealing temperature influences the oxygen content and the preferred c-axis (002) orientation of the films. It was found that annealing significantly increases the grain size and optimizes the columnar crystal structure, though excessive high-temperature annealing leads to structural degradation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Phase-change random access memory (PcRAM) faces significant challenges due to the inherent instability of amorphous GeSbTe (GST). While doping has emerged as an effective method for amorphous stabilization, understanding the precise mechanisms of structural modification and their impact on material stability remains a critical challenge. This study provides a comprehensive investigation of elastic strain and stress in crystalline lattices induced by various dopants (C, N, and Al) through systematic measurements of film thickness changes during crystallization.
View Article and Find Full Text PDFNat Mater
January 2025
Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China.
Batch production of single-crystal two-dimensional (2D) transition metal dichalcogenides is one prerequisite for the fabrication of next-generation integrated circuits. Contemporary strategies for the wafer-scale high-quality crystallinity of 2D materials centre on merging unidirectionally aligned, differently sized domains. However, an imperfectly merged area with a translational lattice brings about a high defect density and low device uniformity, which restricts the application of the 2D materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!