The partial gravity environment in space can negatively affect bone health. This survey aimed to study the reaction of different parts of the lower limb bones of rats to partial gravity and the effects of different degrees of gravity on these bony parts. We used 15 8-week-old male Wistar Hannover rats were used at the beginning of the experiment. The degree of mechanical stress was modified, but the ankle joint was maintained at ∼30°, ∼120°, or ∼160° with or without plaster fixation during 10-day hindlimb suspension. Computed tomography was performed to measure the bone parameters [bone mineral density (BMD), trabecular BMD, cortical BMD, and cortical thickness] of each studied group of the whole, proximal, middle, and distal femur and distal tibia. BMD, trabecular BMD, and cortical thickness of the distal femur and proximal tibia of the simulated mechanical stress associated with partial gravity groups were significantly lower than those of the control group; the effect of different degrees of gravity on the same area of hindlimb bone had no significant difference. The simulated mechanical stress associated with partial gravity had the most significant effect on the bone close to the knee joint, with the largest weight-bearing response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352372 | PMC |
http://dx.doi.org/10.3389/fcell.2021.707470 | DOI Listing |
Materials (Basel)
November 2024
Academic Department of Civil Construction (DACOC), Technological Federal University of Paraná (UTFPR), Curitiba 81280-340, PR, Brazil.
This manuscript evaluated the performance of silanes in cementitious matrices in the partial replacement of superplasticizers by silanes. For this, pastes with a water/cement ratio of 0.186 were produced and the superplasticizer admixture based on polycarboxylate esters was partially substituted by three types of silanes-vinyltriethoxysilane silanes (VTES), n-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), and methacryloxypropyltrimethox-ysilane (MCPTMS)-in two substitutions levels (20% and 40%), and then tested in Portland cement pastes.
View Article and Find Full Text PDFWilderness Environ Med
November 2024
Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA.
Introduction: Vital sign acquisition is a key component of modern medical care. In wilderness and space medical settings, vital sign acquisition can be a difficult process because of limitations on available personnel or lack of access to the patient. Camera-acquired vital signs could address each of these difficulties.
View Article and Find Full Text PDFPhys Med
December 2024
Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany.
Life Sci Space Res (Amst)
November 2024
Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan. Electronic address:
The days of returning to the Moon and landing on Mars are approaching. These long-duration missions present significant challenges, such as changes in gravity, which pose serious threats to human health. Maintaining muscle function and health is essential for successful spaceflight and exploration of the Moon and Mars.
View Article and Find Full Text PDFNPJ Microgravity
October 2024
Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Center SCK CEN, Mol, Belgium.
Regenerative life support systems for space crews recycle waste into water, food, and oxygen using different organisms. The European Space Agency's MELiSSA program uses the cyanobacterium Limnospira indica PCC8005 for air revitalization and food production. Before space use, components' compatibility with reduced gravity was tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!