Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the genus, triterpene saponins are a group of bioactive compounds extensively studied for their different biological and pharmaceutical properties. In this work, the CRISPR/Cas9-based approach with two single-site guide RNAs was used in (barrel medic) to knock-out the and genes, which are responsible for the biosynthesis of soyasapogenol B, the most abundant soyasapogenol in spp. No transgenic plants carrying mutations in the target gene were recovered while fifty-two putative mutant plant lines were obtained following -mediated transformation. Among these, the fifty-one sequenced plant lines give an editing efficiency of 84%. Sequencing revealed that these lines had various mutation patterns at the target sites. Four T0 mutant plant lines were further selected and examined for their sapogenin content and plant growth performance under greenhouse conditions. The results showed that all tested knock-out mutants did not produce soyasapogenols in the leaves, stems and roots, and diverted the metabolic flux toward the production of valuable hemolytic sapogenins. No adverse influence was observed on the plant morphological features of mutants under greenhouse conditions. In addition, differential expression of saponin pathway genes was observed in mutants in comparison to the control. Our results provide new and interesting insights into the application of CRISPR/Cas9 for metabolic engineering of high-value compounds of plant origin and will be useful to investigate the physiological functions of saponins .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350446 | PMC |
http://dx.doi.org/10.3389/fpls.2021.690231 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!