Programmed cell death protein-1 (PD-1)-mediated immunosuppression has been proposed to contribute to the limited clinical efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. We generated PD-1 and T cell receptor (TCR) deficient mesothelin-specific CAR-T (MPTK-CAR-T) cells using CRISPR-Cas9 technology and evaluated them in a dose-escalation study. A total of 15 patients received one or more infusions of MPTK-CAR-T cells without prior lymphodepletion. No dose-limiting toxicity or unexpected adverse events were observed in any of the 15 patients. The best overall response was stable disease (2/15 patients). Circulating MPTK-CAR-T cells peaked at days 7-14 and became undetectable beyond 1 month. TCR-positive CAR-T cells rather than TCR-negative CAR-T cells were predominantly detected in effusion or peripheral blood from three patients after infusion. We further confirmed the reduced persistence of TCR-deficient CAR-T cells in animal models. Our results establish the preliminary feasibility and safety of CRISPR-engineered CAR-T cells with PD-1 disruption and suggest that the natural TCR plays an important role in the persistence of CAR-T cells when treating solid tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429583PMC
http://dx.doi.org/10.1038/s41423-021-00749-xDOI Listing

Publication Analysis

Top Keywords

car-t cells
28
solid tumors
12
mptk-car-t cells
12
cells
10
car-t
8
cells pd-1
8
phase study
4
study car-t
4
pd-1 tcr
4
tcr disruption
4

Similar Publications

Cancer immunotherapy in progress-an overview of the past 130 years.

Int Immunol

January 2025

Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.

Since the first approval of an immune-checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen-receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy.

View Article and Find Full Text PDF

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below.

View Article and Find Full Text PDF

In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead?

Cells

January 2025

DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.

Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment.

View Article and Find Full Text PDF

Using immunotherapeutic agents like inotuzumab ozogamicin (InO), blinatumomab, or chimeric antigen receptor T (CAR T)-cell therapy in frontline adult B-cell acute lymphoblastic leukemia (B-ALL) therapy is promising. These agents are mostly well tolerated and have different toxicity profiles than conventional chemotherapy, enabling their combination with chemotherapy. Additionally, they have often been shown to overcome the traditional adverse ALL risk features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!