Neuroimaging studies have documented brain structural alterations induced by chronic pain, particularly in gray matter volume. However, the effects of trigeminal neuralgia (TN), a severe paroxysmal pain disorder, on cortical morphology are not yet known. In this study, we recruited 30 TN patients and 30 age-, and gender-matched healthy controls (HCs). Using Computational Anatomy Toolbox (CAT12), we calculated and compared group differences in cortical thickness, gyrification, and sulcal depth with two-sample t tests (p < 0.05, multiple comparison corrected). Relationships between altered cortical characteristics and pain intensity were investigated with correlation analysis. Compared to HCs, TN patients exhibited significantly decreased cortical thickness in the left inferior frontal, and left medial orbitofrontal cortex; decreased gyrification in the left superior frontal cortex; and decreased sulcal depth in the bilateral superior frontal (extending to anterior cingulate) cortex. In addition, we found significantly negative correlations between the mean cortical thickness in left medial orbitofrontal cortex and pain intensity, and between the mean gyrification in left superior frontal cortex and pain intensity. Chronic pain may be associated with abnormal cortical thickness, gyrification and sulcal depth in trigeminal neuralgia. These morphological changes might contribute to understand the underlying neurobiological mechanism of trigeminal neuralgia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357824PMC
http://dx.doi.org/10.1038/s41598-021-95811-zDOI Listing

Publication Analysis

Top Keywords

cortical thickness
8
thickness gyrification
8
gyrification sulcal
8
sulcal depth
8
trigeminal neuralgia
8
depth trigeminal
4
neuralgia neuroimaging
4
neuroimaging studies
4
studies documented
4
documented brain
4

Similar Publications

Cognitive variation reflects amyloid, tau, and neurodegenerative biomarkers in Alzheimer's disease.

Geroscience

January 2025

Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.

In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.

View Article and Find Full Text PDF

Purpose: Few studies have explored the bone response in dental implant sites prepared using a piezoelectric device, indicating moderate effectiveness in enhancing secondary stability and osteogenesis. This study seeks to expand our understanding of the changes in biological, clinical, and radiographic parameters, during the initial phases of osseointegration in sites prepared with piezoelectric surgery.

Materials And Methods: Two implant sites were prepared in the tibia of four minipigs.

View Article and Find Full Text PDF

Background/purpose: Studies have indicated that 50%-55% of the population have malocclusion, and approximately 5%-10% require orthognathic surgery to correct this condition. Optimal placement of plates and screws significantly affects the success rate of the surgery and postoperative stability. This study evaluates the cortical thickness of the maxillary bone in the nasomaxillary and zygomaticomaxillary buttress regions in Taiwanese patients based on cone-beam computed tomography (CBCT) images.

View Article and Find Full Text PDF

Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.

View Article and Find Full Text PDF

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!