Hydrologic models predict the spatial and temporal distribution of water and energy at the land surface. Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity (VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated from space-based MODIS measurements have been compiled into input files for both the Classic and Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. We evaluate VICGlobal's ability to simulate the water balance in the Upper Colorado River basin and 12 smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations in the CONUS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357956PMC
http://dx.doi.org/10.1038/s41597-021-00999-4DOI Listing

Publication Analysis

Top Keywords

land surface
12
vic model
12
variable infiltration
8
infiltration capacity
8
vegetation parameters
8
ability simulate
8
near-global high
4
high resolution
4
resolution land
4
surface parameter
4

Similar Publications

Hydrologic outputs generated over the Great Lakes with a calibrated version of the GEM-Hydro model.

Sci Data

January 2025

Meteorological Research Division, Environment and Climate Change Canada, Dorval, QC, Canada.

This dataset contains outputs from a calibrated version of the GEM-Hydro model developed at Environment and Climate Change Canada (ECCC) and is available on the Federated Research Data Repository. The dataset covers the basins of the Laurentian Great Lakes and the Ottawa River and extends over the period 2001-2018. The data consist of all variables (hourly fluxes and state variables) related to the water balance of GEM-Hydro's land-surface scheme (including precipitation, surface and sub-surface runoff, drainage, evaporation, snow water equivalent, soil moisture…) and mean daily streamflow at 212 gauge locations.

View Article and Find Full Text PDF

[Prediction of potential geographic distribution of in Yunnan Province using random forest and maximum entropy models].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

December 2024

Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, Yunnan 671000, China.

Objective: To predict the potential geographic distribution of in Yunnan Province using random forest (RF) and maximum entropy (MaxEnt) models, so as to provide insights into surveillance and control in Yunnan Province.

Methods: The snail survey data in Yunnan Province from 2015 to 2016 were collected and converted into snail distribution site data. Data of 22 environmental variables in Yunnan Province were collected, including twelve climate variables (annual potential evapotranspiration, annual mean ground surface temperature, annual precipitation, annual mean air pressure, annual mean relative humidity, annual sunshine duration, annual mean air temperature, annual mean wind speed, ≥ 0 ℃ annual accumulated temperature, ≥ 10 ℃ annual accumulated temperature, aridity and index of moisture), eight geographical variables (normalized difference vegetation index, landform type, land use type, altitude, soil type, soil textureclay content, soil texture-sand content and soil texture-silt content) and two population and economic variables (gross domestic product and population).

View Article and Find Full Text PDF

Drought-Induced Weakening of Temperature Control on Ecosystem Carbon Uptake Across Northern Lands.

Glob Chang Biol

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.

Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain.

View Article and Find Full Text PDF

Waterlogging (WL) is an important abiotic stress, severely affecting plant growth and development, inhibiting root respiration and degradation of chlorophyll, senescence of leaves and chlorosis leading to substantial yield loss. These intensities of yield losses generally depend on the duration of WL and crop growth stages. Maize being a dry land crop is particularly sensitive to WL.

View Article and Find Full Text PDF

Grasslands cover approximately a third of the Earth's land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!