Mismatch repair mutations: Biomarker for immunotherapy in colorectal cancers.

Indian J Cancer

Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, USA.

Published: January 2023

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijc.IJC_548_20DOI Listing

Publication Analysis

Top Keywords

mismatch repair
4
repair mutations
4
mutations biomarker
4
biomarker immunotherapy
4
immunotherapy colorectal
4
colorectal cancers
4
mismatch
1
mutations
1
biomarker
1
immunotherapy
1

Similar Publications

Objective: To evaluate signal transducer and activator of transcription 3 (STAT3) inhibition we conducted a co-clinical trial testing danvatirsen, a STAT3 antisense oligonucleotide (ASO) and checkpoint inhibition in conjunction with preclinical experiments.

Methods And Analysis: Orthotopically implanted pancreatic cancer (pancreatic adenocarcinoma (PDAC)) was treated with STAT3 ASO with immune checkpoint inhibition. Tumour infiltrating immune cell populations were characterised via flow cytometry.

View Article and Find Full Text PDF

Objective: To explore the impact of molecular subtype in endometrial cancer (EC) on CD8+T cell densities. Furthermore, this work will test the assumption that all mismatch repair deficient (MMRd) tumours are immunologically similar which would enable current trial data to be generalised to all MMRd ECs.

Methods And Analysis: All tumours were characterised into the four clinical molecular subtypes.

View Article and Find Full Text PDF

Kaposi Sarcoma (KS) is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus (KSHV/HHV-8). People with immunodeficiencies, including HIV, are at increased risk for developing KS, but our understanding of the contributions of the cellular genome to KS pathogenesis remains limited. To determine if there are cellular genetic alterations in KS that might provide biological or therapeutic insights, we performed whole exome sequencing on 78 KS tumors and matched normal control skin from 59 adults with KS (46 with HIV-associated KS and 13 with HIV-negative KS) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda.

View Article and Find Full Text PDF

SN1-type alkylating reagents generate O6-methylguanine (meG) lesions that activate the mismatch repair (MMR) response. Since post-replicative MMR specifically targets the nascent strand, meG on the template strand is refractory to rectification by MMR and, therefore, can induce non-productive MMR reactions. The cycling of futile MMR attempts is proposed to cause DNA double-strand breaks in the subsequent S phase, leading to ATR-checkpoint-mediated G2 arrest and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!